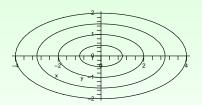

1. (a) For  $f(x,y) = \sqrt{x^2 + 4y^2}$ , identify the surface z = f(x,y) by sketching traces or plotting it in Maple.

First try in Maple, on left – hard to tell what it is. Adjusted the z-range and now it's clear it is the upper half of an elliptic cone:





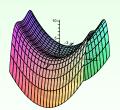

$$plot3d(sqrt(x^2+4*y^2),$$

$$x=-4..4$$
,  $y=-4..4$ , axes=normal);

right-click on graph - axes - properties change z to going from 0 to 4

1. (b) For  $f(x,y) = \sqrt{x^2 + 4y^2}$ : on a single set of 2-dimensional axes, sketch the traces z=1, z=2, z=3, and z=4 to form a *contour plot* of the surface. Pay attention to the relationship between the contour plot and the surface.

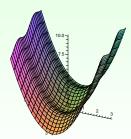



## 2. Match the functions to the surfaces:

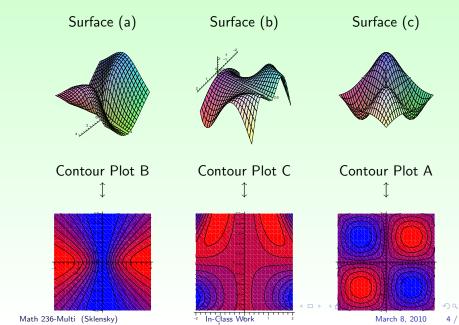
(a) 
$$f(x,y) = x^2 - \frac{x^4}{4} + y^2$$

(b) 
$$f(x,y) = (\sin(x))^2 + y^2$$

(c) 
$$f(x,y) = (\sin(x))^2 + \cos(y)$$


## Surface $\mathsf{B} \longleftrightarrow (\mathsf{a})$




## Surface A $\longleftrightarrow$ (c)



Surface  $C \longleftrightarrow (b)$ 



## 3. Match the surfaces to the contour plots

