§12.5: The Chain Rule

1. Suppose that the portion of a tree that is usable for lumber is a right circular cylinder. If the usable height of a tree increases 2 ft per year and the usable diameter of a tree increases 3 in per year, how fast is the volume of usable lumber increasing when the usable height of the tree is 20 ft and the usable diameter is 30 in ?
2. Two straight roads intersect at right angles. Car A, moving on one of the two roads, approaches the intersection at $25 \mathrm{mi} / \mathrm{h}$ and car B, moving on the other road, approaches the intersection at $30 \mathrm{mi} / \mathrm{h}$. At what rate is the distance between the cars (as the crow flies) changing when A is 0.3 mile from the intersection and B is 0.4 mile from the intersection?

§12.6: Directional Derivatives and Gradients

3. Suppose that $D_{\overrightarrow{\mathbf{u}}} f(1,2)=-5$ and $D_{\overrightarrow{\mathbf{v}}} f(1,2)=10$, where $\overrightarrow{\mathbf{u}}=<\frac{3}{5},-\frac{4}{5}>$ and $\overrightarrow{\mathbf{v}}=\left\langle\frac{4}{5}, \frac{3}{5}>\right.$. Find
(a) $f_{x}(1,2)$
(b) $f_{y}(1,2)$
(c) the directional derivative of f at $(1,2)$ in the direction of the origin.
