Where We’re Headed:

» Today:

» Look at the two problems you worked on at the end of class Monday;
use them to briefly discuss conservative vector fields.

> Integrating over curves rather than axes or regions (Line Integrals)

> First, multivariate functions (area between a curve and a surface)

> Next, vector fields (work)

» Going forward:

» Fundamental Theorem for Line Integrals - Conservative Vector Fields
and Independence of Path

» Green's Theorem (which is also somewhat like a Fundamental Theorem
of Line Integrals)
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Solution: Problem 1, In Class Work from Last Time
1. Find a potential function f(x, y) for the vector field
(x,y) =<cosy —2+ y2exy2,cosy — xsiny + 3y? + 2xyexy2 >.

fy = cos(y) — 2+ Y2 = f(x,y)= /cos(y) — 24 y2e?’ dx

= f(x,y) =xcos(y) — 2x + e 4
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Solution: Problem 1, In Class Work from Last Time
1. Find a potential function f(x, y) for the vector field
(x,y) =<cosy —2+ y2exy2,cosy — xsiny + 3y? + 2xyexy2 >.

fy = cos(y) — 2+ Y2 = f(x,y)= /cos(y) — 24 y2e?’ dx

= f(x,y) =xcos(y) — 2x + e +

= f, = —xsin(y) + 2yxe” +
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Solution: Problem 1, In Class Work from Last Time

1. Find a potential function f(x, y) for the vector field
(x,y) =<cosy —2+ y2exy2,cosy — xsiny + 3y? + 2xyexy2 >.

fy = cos(y) — 2+ Y2 = f(x,y) = /cos(y) — 24 y2e?’ dx
= f(x,y):xcos(y)—2x+exy2+
= f, = —xsin(y) + 2yxe” +

Since we already know what f, is, we can solve for

f, = cos(y) — xsin(y) + 3y* + 2xye?’ =
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Solution: Problem 1, In Class Work from Last Time

1. Find a potential function f(x, y) for the vector field
(x,y) =<cosy —2+ y2exy2,cosy — xsiny + 3y? + 2xyexy2 >.

fy = cos(y) — 2+ Y2 = f(x,y) = /cos(y) — 24 y2e?’ dx

= f(x,y) =xcos(y) — 2x + e +
= f, = —xsin(y) + 2yxe” +

Since we already know what f, is, we can solve for
f, = cos(y) — xsin(y) + 3y* + 2xye?’ =
=
Thus one potential function for ? is

f(x,y) = xcos(y) — 2x + e 4+
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Problem 2, In Class Work from Last Time

2. Find a potential function f(x, y) for the vector field
?(X,y) =<2y 4+ 2xy%,2x + 2y >

. if you can
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Summarize Results
1. The vector field
?(x,y) =< cosy —2+ y2exy27 cosy — xsiny + 3y? + 2xyexy2 >
has a potential function:
B

f(x,y) = xcos(y) — 2x + e 4 sin(y) + y°.

That is, ?f = ?

2. The vector field
?(X,y) =< 2y 4+ 2xy%,2x + 2y >
does not have any potential function.

That is, there is no function f(x, y) so that Vi=F.
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Summarize Results
1. The vector field
?(x,y) =< cosy —2+ y2exy27 cosy — xsiny + 3y? + 2xyexy2 >
has a potential function:
B

f(x,y) = xcos(y) — 2x + e 4 sin(y) + y°.

That is, ?f = ? ? is a conservative vector field
2. The vector field

?(X,y) =< 2y 4+ 2xy%,2x + 2y >

does not have any potential function.
That is, there is no function f(x, y) so that Vi=F.
is not a conservative vector field
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Integrating over a curve C

We want to find the area of the vertical surface that we create if we go

straight from a curve C in the xy plane up to surface z = f(x, y).
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» Subdivide C into n sub-curves.

Area between curve C and surface z = f(x, y)

> Let AA; = signed area of ith

strip.

= S AA
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-
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> Approximate AA;:

curve,

Let (x*, y7*)
arc length of ith sub curve.
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