WeBWorK Problem 2

2. Evaluate the line integral $\int_{C} x^3 z \, ds$ where C is the line segment from (0,7,4) to (4,3,2).

If we parametrize $\mathcal C$ with $\overrightarrow{\mathbf r}(t)=ig\langle x(t),y(t),z(t)ig
angle$ on $a\leq t\leq b$, then

$$\int_{\mathcal{C}} x^3 z \, ds = \int_a^b f(x(t), y(t), z(t)) \sqrt{[x'(t)]^2 + [y'(t)]^2 + [z'(t)]^2} \, dt.$$

Parametrize C with $\vec{r}(t) = \langle 0 + (4-0)t, 7 + (3-7)t, 4 + (2-4)t \rangle = \langle 4t, 7 - 4t, 4 - 2t \rangle$ on $0 \le t \le 1$.

$$\int_{\mathcal{C}} x^3 z \, ds = \int_0^1 \left[(4t)^3 \right] \left[4 - 2t \right] \sqrt{4^2 + 4^2 + 2^2} \, dt = 6 \int_0^1 256t^3 - 128t^4 \, dt$$

Math 236-Multi (Sklensky)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ● ○ ○ ○ ○

Recall: Line Integrals With Respect to Arclength

The area of the vertical surface that we create if we go straight up from the curve ${\cal C}$ to the surface is given by

If
$${\mathcal C}$$
 is parametrized by $\overrightarrow{{\mathbf r}}(t)$ for $t\in [a,b]$, then

$$\int_{\mathcal{C}} f \, ds \quad \stackrel{def}{=} \quad \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i, y_i) \, \Delta s_i$$
$$= \quad \int_{a}^{b} f(\overrightarrow{\mathbf{r}}(t)) \, \| \overrightarrow{\mathbf{r}}'(t) \| \, dt$$

< D > < A > < B >

Other Applications of Line Integrals With Respect to Arclength

The area of the vertical surface that we create if we go straight up from the curve ${\cal C}$ to the surface is given by

- ➤ Signed area of the vertical surface created by connecting the curve C lying in the xy-plane to the portion of z = f(x, y) lying directly above C.
- Mass and Center of mass of an object in the shape of a curve – a spring or a wire, for instance

Arclength

(日)

In-Class Work

April 26, 2013 3 / 15

The work done by a constant force F to move an object a distance of d in a straight line (in the same direction as the force) is

$$W = Fd$$
.

- Saw in §10.3: The work done by a constant force F to move an object along the vector d when F doesn't necessarily point in the same direction as d is $W = \vec{F} \cdot \vec{d}$
- Recall from Calc 1 or 2: The work done by a variable force F(x) on an interval [a, b] (in the same direction as the force) is

$$W = \int_a^b F(x) \ dx.$$

Math 236-Multi (Sklensky)

In-Class Work

April 26, 2013 4 / 15

(日)

The work done by a constant force F to move an object a distance of d in a straight line (in the same direction as the force) is

$$W = Fd$$
.

- Saw in §10.3: The work done by a constant force F to move an object along the vector d when F doesn't necessarily point in the same direction as d is
 W = F : d
- Recall from Calc 1 or 2: The work done by a variable force F(x) on an interval [a, b] (in the same direction as the force) is

$$W = \int_a^b F(x) \ dx.$$

► What is the work done by a variable force $\overrightarrow{F}(x, y)$ on a curve C?

Math 236-Multi (Sklensky)

In-Class Work

April 26, 2013 4 / 15

A particle moves through the force field \overrightarrow{F} along the **oriented** curve C.

Question: How do we measure the work done by the force field in moving this particle along that curve? (In other words, how do we measure the contribution of the force field in getting the particle to where it ends up?)

Math 236-Multi (Sklensky)

In-Class Work

April 26, 2013 5 / 15

(日)

- Parametrize C with a v.v.f. $\overrightarrow{\mathbf{r}}(t)$. Be sure $\overrightarrow{\mathbf{r}}(t)$ describes C's orientation.
- Subdivide C into n subintervals.
- Each subinterval C_i has length Δs_i .

111111111111111111111111111111111111111
AAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
XXXXXX (() () () () () () () ()
NANA YOU UNIT A PROPERTY
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
the second secon

- Parametrize C with a v.v.f.  $\overrightarrow{\mathbf{r}}(t)$ . Be sure  $\overrightarrow{\mathbf{r}}(t)$  describes C's orientation.
- Subdivide C into n subintervals.
- Each subinterval  $C_i$  has length  $\Delta s_i$ .
- Pick pt  $P_i(x_i, y_i, z_i) = \overrightarrow{\mathbf{r}}(t_i)$  on  $\mathcal{C}_i$ .
- Approx  $C_i$  by a vector  $\overrightarrow{\mathbf{d}}_i$  tangent to  $C_i$  at  $P_i$  of length  $\Delta s_i$ .

$$\overrightarrow{\mathbf{d}}_{i} = \Delta s_{i} \left( \frac{\overrightarrow{\mathbf{r}}'(t_{i})}{\|\overrightarrow{\mathbf{r}}'(t_{i})\|} \right)$$

1 1 1 1 1 1 1 1 1 7 7 7	1111111117777
	111111111
\\\\ <i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>	
- N N N N N I I I I I I I Z Z	1111111111
XXXXX1111122	1111117777
N N N N N N N N N MART	~
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~	
~~~~~	
/	· · · +
-2	
=	
- <u>-</u>	

- ► Parametrize C with a v.v.f. $\overrightarrow{\mathbf{r}}(t)$. Be sure $\overrightarrow{\mathbf{r}}(t)$ describes C's orientation.
- Subdivide C into n subintervals.
- Each subinterval C_i has length Δs_i .
- Pick pt $P_i(x_i, y_i, z_i) = \overrightarrow{\mathbf{r}}(t_i)$ on \mathcal{C}_i .
- Approx C_i by a vector d
 i tangent to C_i at P_i of length Δs_i.

$$\overrightarrow{\mathbf{d}}_{i} = \Delta s_{i} \left(\frac{\overrightarrow{\mathbf{r}}'(t_{i})}{\|\overrightarrow{\mathbf{r}}'(t_{i})\|} \right)$$

• Work over $C_i = W_i \approx \overrightarrow{\mathbf{F}}(\overrightarrow{\mathbf{r}}(t_i)) \cdot \overrightarrow{\mathbf{d}}_i$

$$W \approx \sum_{i=1}^{n} \overrightarrow{\mathbf{F}}(\overrightarrow{\mathbf{r}}(t_{i})) \cdot \left(\frac{\overrightarrow{\mathbf{r}}'(t_{i})}{\|\overrightarrow{\mathbf{r}}'(t_{i})\|}\right) \Delta s_{i}$$

$$n \overrightarrow{\mathbf{F}}(\overrightarrow{\mathbf{r}}(t_{i})) \overrightarrow{\mathbf{r}}'(t_{i})$$

$$W = \lim_{n \to \infty} \sum_{i=1}^{n} \frac{\mathbf{F}(\mathbf{r}'(t_i)) \cdot \mathbf{r}''(t_i)}{\|\mathbf{r}''(t_i)\|} \Delta s_i$$

Work, continued

What we have so far: The work done by a force field $\overrightarrow{\mathbf{F}}$ acting on an object moving along a curve \mathcal{C} is

$$W = \lim_{n \to \infty} \sum_{i=1}^{n} \frac{\overrightarrow{\mathbf{F}}(\overrightarrow{\mathbf{r}}(t_{i})) \cdot \overrightarrow{\mathbf{r}}'(t_{i})}{\|\overrightarrow{\mathbf{r}}'(t_{i})\|} \Delta s_{i}$$

Recall: If C is parametrized by $\overrightarrow{\mathbf{r}}(t)$ for $t \in [a, b]$ and $f : \mathbb{R}^n \to \mathbb{R}$, then

$$\lim_{n \to \infty} \sum_{i=1}^{n} f(x_i, y_i) \Delta s_i \stackrel{def}{=} \int_{\mathcal{C}} f \, ds$$
$$= \int_{a}^{b} f(\overrightarrow{\mathbf{r}}(t)) \| \overrightarrow{\mathbf{r}}'(t) \| \, dt$$

Math 236-Multi (Sklensky)

In-Class Work

April 26, 2013 7 / 15

= 900

(日)

Notation:

If
$$\overrightarrow{\mathbf{F}}(x,y) = \langle F_1(x,y), F_2(x,y) \rangle$$
 and $\overrightarrow{\mathbf{r}}(t) = \langle x(t), y(t) \rangle$, then

$$\int_{\mathcal{C}} \overrightarrow{\mathbf{F}}(x,y) \cdot d\overrightarrow{\mathbf{r}} = \int_{\mathcal{C}} \langle F_1(x,y), F_2(x,y) \rangle \cdot \langle x'(t), y'(t) \rangle dt$$

$$= \int_{\mathcal{C}} F_1(x(t), y(t)) \boxed{x'(t)dt} + F_2(x(t), y(t)) \boxed{y'(t) dt}$$

$$= \int_{\mathcal{C}} F_1(x,y) dx + F_2(x,y) dy$$

We sometimes call these component-wise line integrals.

Math 236-Multi (Sklensky)

In-Class Work

April 26, 2013 8 / 15

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Work - Example

Find the work done by the force field

$$\overrightarrow{F}(x,y) = \langle x+y,y \rangle$$

acting on a object moving along the curve C that corresponds to the upper unit semicircle oriented counter-clockwise.

Found that
$$W = -\frac{\pi}{2}$$

Does it make sense that the work is negative?

Math 236-Multi (Sklensky)

In-Class Work

April 26, 2013 9 / 15

Two Types of Line Integrals

Line Integral With Respect to Arclength

Let f be a continuous function defined on a smooth curve C given by $\overrightarrow{\mathbf{r}}(t)$ for $a \leq t \leq b$. Then the line integral of f along C is

$$\int_{\mathcal{C}} f \, ds = \int_{a}^{b} f\left(\overrightarrow{\mathbf{r}}(t)\right) \left\|\overrightarrow{\mathbf{r}}'(t)\right\| \, dt$$

▶ Line Integral of a Vector Field along a Curve Let $\overrightarrow{\mathbf{F}}$ be a continuous vector field defined on a smooth curve \mathcal{C} given by $\overrightarrow{\mathbf{r}}(t)$ for $a \le t \le b$. Then the line integral of $\overrightarrow{\mathbf{F}}$ along \mathcal{C} is

$$\int_{\mathcal{C}} \overrightarrow{\mathbf{F}} \cdot d\overrightarrow{\mathbf{r}} = \int_{a}^{b} \overrightarrow{\mathbf{F}} \left(\overrightarrow{\mathbf{r}}(t) \right) \cdot \overrightarrow{\mathbf{r}}'(t) dt$$

Math 236-Multi (Sklensky)

April 26, 2013 10 / 15

In Class Work

Let:

 $\overrightarrow{\mathbf{F}}(x,y) = < 2x + y + 2, x + 3 >$ \mathcal{C}_1 be the upper unit semicircle oriented counterclockwise \mathcal{C}_2 be the line segment from (1,0) to (-1,0)

Compute the amount of work done by $\overrightarrow{\mathbf{F}}(x, y)$ acting on an object

1. moving along \mathcal{C}_1

Math 236-Multi (Sklensky)

2. moving along \mathcal{C}_2

Notation:

If
$$\overrightarrow{\mathbf{F}}(x,y) = \langle F_1(x,y), F_2(x,y) \rangle$$
 and $\overrightarrow{\mathbf{r}}(t) = \langle x(t), y(t) \rangle$, then

$$\int_{\mathcal{C}} \overrightarrow{\mathbf{F}}(x,y) \cdot d\overrightarrow{\mathbf{r}} = \int_{\mathcal{C}} \langle F_1(x,y), F_2(x,y) \rangle \cdot \langle x'(t), y'(t) \rangle dt$$

$$= \int_{\mathcal{C}} F_1(x(t), y(t)) x'(t) dt + F_2(x(t), y(t)) y'(t) dt$$

$$= \int_{\mathcal{C}} F_1(x,y) dx + F_2(x,y) dy$$

Math 236-Multi (Sklensky)

In-Class Work

April 26, 2013 12 / 15

Let C be the line segment from (1,2) to (3,5). Use the parametrization $\vec{\mathbf{r}}(t) = \langle 1+2t, 2+3t \rangle$.

Math 236-Multi (Sklensky)

In-Class Work

April 26, 2013 13 / 15

Solutions

1. Let $\overrightarrow{\mathbf{F}}(x, y) = \langle 2x + y + 2, x + 3 \rangle$ and let \mathcal{C}_1 be the upper unit semicircle oriented counterclockwise. Compute the amount of work done by $\overrightarrow{\mathbf{F}}(x, y)$ acting on an object moving along \mathcal{C}_1 .

Parametrize C_1 : $\overrightarrow{\mathbf{r}}(t) = <\cos(t), \sin(t) >,$ $0 \le t \le \pi.$

► Work =
$$\int_{C_1} \overrightarrow{\mathbf{F}}(x, y) \cdot d\overrightarrow{\mathbf{r}}$$

$$\Rightarrow \underbrace{W}_{\int_0^{\pi} \overrightarrow{\mathbf{F}}(\cos(t), \sin(t))} \cdot \overrightarrow{\mathbf{r}}'(t) dt.$$

Solutions

××××××××××××××××

Mat

2. Let $\overrightarrow{\mathbf{F}}(x,y) = \langle 2x + y + 2, x + 3 \rangle$ and let \mathcal{C}_2 be the line segment from (1,0) to (-1,0). Compute the amount of work done by $\overrightarrow{\mathbf{F}}(x,y)$ acting on an object moving along \mathcal{C}_2 .

► Parametrize C_2 : $\overrightarrow{\mathbf{r}}(t) = < 1 - 2t, 0 >, 0 \le t \le 1$

• Work =
$$\int_{\mathcal{C}_2} \overrightarrow{\mathbf{F}}(x, y) \cdot d\overrightarrow{\mathbf{r}}$$

 $W = \int_0^1 \overrightarrow{\mathbf{F}} (1 - 2t, 0) \cdot \overrightarrow{\mathbf{r}}'(t) dt.$

$$W = \int_{0}^{1} \langle 2(1-2t) + 0 + 2, 1 - 2t + 3 \rangle \langle -2, 0 \rangle dt$$

= $\int_{0}^{1} \langle 4 - 4t, 4 - 2t \rangle \langle -2, 0 \rangle dt$
h 236-Multi (Sklepsky) $\Theta + \Theta t dt = \ln \Theta \otimes \operatorname{Work} t^{2} |_{1}^{1} = 4$