Example 1:

Consider the parametric equations:

$$x(t) = t^2 - 1$$
 $y(t) = t^4 - 4t$.

Example 1:

Consider the parametric equations:

$$x(t) = t^2 - 1$$
 $y(t) = t^4 - 4t$.

Plugging in various values for t gives:

t	X	y
-3 -2	8	93
-2	3	24
-1	0	5
0	-1	0
1	0	-3
2 3	3	8
3	8	69

(Check a few on your own!)

It turns out, the graph of the parametric equations

$$x(t) = t^2 - 1$$
 $y(t) = t^4 - 4t$.

looks like

January 23, 2013

Consider the parametric equations

$$x(t) = t^2, y(t) = \sin(\pi t), t = -1..1$$

On the interval [-1,1],

- \triangleright x(t) goes from 1 to 0 and back up to 1 again
- ▶ y(t) goes through exactly one period of sine, from 0 down to -1, up to 1, and back to 0 again.
- ▶ Thus the pair cycle through a loop exactly once.

The path is traced out clockwise, starting and ending at the point (1,0)