Recall:

Given f(x,y), where x, y are functions of t
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Also recall:

Given f(x,y), where x, y are both functions of s, t

z=f(x,y)
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In Class Work

1. Suppose that w = f(x,y, z) and that x, y, and z are all functions of
r,s, and t.
(a) How many partial derivatives do you need to calculate, in order to
determine %—‘”t’?
(b) What is the expression for 227

2. Draw a tree diagram to figure out the chain rule for composite

functions of the form z = g(u, v) = f(x(r,s),y(r,s, t)), where r,s,
and t are all functions of v and v.

3. Use the chain rule twice to find g”(t) if g(t) = f(x(t),y(t)).
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Solutions

1.How many partial derivatives do you need to calculate, in order to
determine 2%?

ot
w=f(x,y, z) )
ow Just to calculate this one
= ow ow
0x T

T 0z partial using the chain rule,
| need to calculate six dif-
ferent partial derivatives.
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Solutions

2. Draw a tree diagram to figure out the chain rule for composite

functions of the form z = g(u,v) = f(x(r,s),y(r,s, t)), where r,s, and t
are all functions of u and v.
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Solutions
3. Use the chain rule twice to find g”(t) if g(t) = f(x(t), y(t)).

I(t)—g%—i-g . H(t)—i g% _|_i g
B\ = o dy < ©dt \ Ox dt dt \ Oy '

Use the product rule on both products in the sum on the right:
”(t) — i g %4_%&4_1 g . +g
& ~ |dt \Ox/) dt Ox dt? dt \ dy oy

Apply the chain rule to both %(X(t),y(t)) and %(X(t),y(t)):
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Recall:

If we have z = f(x, y), then the equation of the tangent plane at (a, b)
(when f(x,y) has continuous first partials at (a, b)) is

z = f(a, b)(x — a) + f,(y — b) + f(a, b).
Note: This equation only gives the tangent plane if the tangent plane is
non-vertical.

Rephrasing this slightly:

If we have z = f(x,y), then the equation of the tangent plane at the point
(a, b,c) (when f(x,y) has continuous partials at x = a, y = b) is

z = z(a, b)(x — a) + z,(a, b)(y — b) + c.

Math 236-Multi (Sklensky) In-Class Work March 26, 2010 7/7



