In Class Work

1. Let
$$f(x,y) = \sqrt{x^2 + 4y^2}$$
.

- (a) Identify the surface z = f(x, y) by sketching traces or plotting it in Maple.
- (b) On a single set of 2-dimensional axes, sketch the traces z=1, z=2, z=3, and z=4 to form a *contour plot* of the surface. Pay attention to the relationship between the contour plot and the surface.

In Class Work

2. Match the functions to the surfaces:

(a)
$$f(x,y) = x^2 - \frac{x^4}{4} + y^2$$

(b)
$$f(x, y) = (\sin(x))^2 + y^2$$

(c)
$$f(x,y) = (\sin(x))^2 + \cos(y)$$

Surface B

Surface A

Surface C

In Class Work

3. Match the surfaces to the contour plots

3 / 7

1. (a) For $f(x,y) = \sqrt{x^2 + 4y^2}$, identify the surface z = f(x,y) by sketching traces or plotting it in Maple.

First try in Maple, on left – hard to tell what it is. Adjusted the z-range and now it's clear it is the upper half of an elliptic cone:

$$x=-4..4$$
, $y=-4..4$, Math 236-Multi (Sklensky)

right-click on graph - axes - prop-

erties

change z to going from 0 to 4

1. (b) For $f(x,y) = \sqrt{x^2 + 4y^2}$: on a single set of 2-dimensional axes, sketch the traces z = 1, z = 2, z = 3, and z = 4 to form a *contour plot* of the surface. Pay attention to the relationship between the contour plot and the surface.

2. Match the functions to the surfaces:

(a)
$$f(x,y) = x^2 - \frac{x^4}{4} + y^2$$

(b)
$$f(x, y) = (\sin(x))^2 + y^2$$

(c)
$$f(x,y) = (\sin(x))^2 + \cos(y)$$

Surface $B \longleftrightarrow (a)$

Math 236-Multi (Sklensky) In-Class Work

Surface $A \longleftrightarrow (c)$

Surface $C \longleftrightarrow (b)$

3. Match the surfaces to the contour plots

7 / 7