
Intuitive Example, to Motivate Idea of Limits:

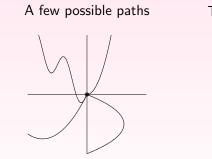
Let z = f(x, y), where $f(x, y) = 1 - x^2 - y^2$.

Because of your Calc 1 experience with limits, you will not be surprised that

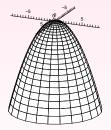
$$\lim_{(x,y)\to(0,0)}f(x,y)=1.$$

Math 236-Multi (Sklensky)

In-Class Work


March 8, 2013 1 / 11

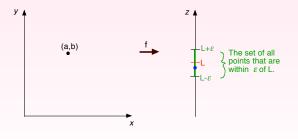
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙


Intuitive Example, to Motivate Idea of Limits:

What that means:

No matter what path you look at that leads to (0,0), on the surface, that path approaches z = 1.

The surface $z = 1 - x^2 - y^2$


In-Class Work

March 8, 2013 2 / 11

Idea behind the definition of the multivariate limit:

Given an element $(a, b) \in \mathbb{R}^2$, and a real number $L \in \mathbb{R}$. Does $\lim_{(x,y)\to(a,b)} f(x,y) = L$?

Let ϵ be an arbitrary positive real number. Mark off the set of all points within ϵ of L on the z-axis.

Math 236-Multi (Sklensky)

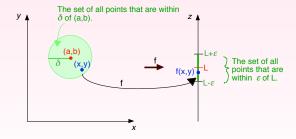
In-Class Work

March 8, 2013 3 / 11

E naa

Idea behind the definition of the multivariate limit:

Does there exist a circle centered at (a, b), such that every point in that circle gets sent by f to the region around L that we marked off?


March 8, 2013 4 / 11

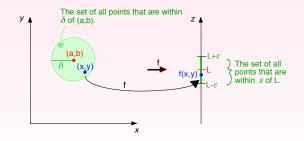
Idea behind the definition of the multivariate limit:

If, for every $\epsilon > 0$, there is a circle around (a, b) so that every point in the circle gets sent by f to the interval $(L - \epsilon, L + \epsilon)$, then we say that

 $\lim_{(x,y)\to(a,b)} f(x,y) = L$, because we can get arbitrarily close to $L(\epsilon \text{ close})$, inst by choosing a small enough radius around (a, b)

just by choosing a small enough radius around (a, b).

Math 236-Multi (Sklensky)


In-Class Work

March 8, 2013 5 / 11

Definition:

 $\lim_{(x,y)\to(a,b)}f(x,y)=L$ if and only if for every $\epsilon>0$ there exists a $\delta>0$ such that

$$d((x,y),(a,b)) < \delta \implies |f(x,y) - L| < \epsilon$$

Math 236-Multi (Sklensky)

In-Class Work

■ト < ≣ ト = つへの March 8, 2013 6 / 11

イロト イポト イヨト イヨト