Let $H \leq G$. For any $a \in G$, the set $aH = \{ah | h \in H\}$ is the **left coset of** H **in** G **containing** a. Similarly, $Ha = \{ha | h \in H\}$ is the **right coset of** H **in** G**containing** a.

Lemma: Let $H \leq G$ and $a, b \in G$. Then

1. $a \in aH$.

- 2. aH = H iff $a \in H$.
- 3. Either aH = bH or $aH \cap bH = \emptyset$.
- 4. aH = bH iff $(a)^{-1}b \in H$.
- 5. |aH| = |bH| = |H|.
- 6. aH = Ha iff $H = (a)^{-1}Ha$.
- 7. $aH \leq G$ iff $a \in H$.

October 28, 2002

1. Property 4 of the lemma says:

$$aH = bH \iff (a)^{-1}b \in H.$$

Rewrite this property in additive notation. Assume the group is Abelian.

- 2. Let $H = \{0, \pm 3, \pm 6, \pm 9, \ldots\} = 3\mathbb{Z} \le \mathbb{Z}$.
 - (a) Decide whether or not the following cosets of H in \mathbb{Z} are the same.
 - i. 11 + H and 17 + H
 - ii. -1 + H and 5 + H
 - iii. 7 + H and 23 + H
 - (b) Find all left cosets of H in Z.

October 28, 2002

Lagrange's Theorem

If G is a finite group and $H \leq G$, then |H| divides |G|. Further, the number of distinct left (right) cosets of H in G is $\frac{|G|}{|H|}$.

That is, if G is finite, then $|G:H| = \frac{|G|}{|H|}$.

October 28, 2002