The 8 motions on the square

$$\{R_0, R_{90}, R_{180}, R_{270}, H, D, V, D'\}$$

and the operation \circ of combining the motions form a system called the **dihedral group of order 8**, denoted D_4 .

Below is the *Cayley* table showing the result of the applying the operation to any 2 elements.

0	R_0	R_{90}	R_{180}	R_{270}	H	D	V	D'
R_0	R_0	R_{90}	R_{180}	R_{270}	H	D	V	D'
R_{90}	R_{90}	R_{180}	R_{270}	R_0	D'	H	D	V
R_{180}	R_{180}	R_{270}	R_0	R_{90}	V	D'	Η	D
R_{270}	R_{270}	R_0	R_{90}	R_{180}	D	V	D'	Η
Η	H	D	V	D'	R_0	R_{90}	R_{180}	R_{270}
D	D	V	D'	H	R_{270}	R_0	R_{90}	R_{180}
V	V	D'	H	D	R_{180}	R_{270}	R_0	R_{90}
D'	D'	H	D	V	R_{90}	R_{180}	R_{270}	R_0

Important Aspects of the Cayley Table for D_4

- 1. Closure: No new motions are introduced. If $A, B \in D_4$, then $A \circ B \in D_4$.
- 2. Identity: R_0 acts as an identity motion $R_0 \circ A = A \circ R_0 = A$ for all $A \in D_4$.
- 3. Inverse: Every element has an inverse motion that "undoes" what the motion does. For example, $R_{90} \circ R_{270} = R_{270} \circ R_{90} = R_0.$
- 4. Associativity: You can check the table that $(A \circ B) \circ C = A \circ (B \circ C)$ for all $A, B, C \in D_4$. This makes sense if you think of the motions as functions, and one motion followed by another as composition.
- 5. The motions are not commutative. For example, $R_{90} \circ H = D$ but $H \circ R_{90} = D'$. But some motions do commute: $R_{90} \circ R_{180} = R_{180} \circ R_{90} = R_{270}$.
- 6. Although it's not obvious from the table, all of the motions can be obtained by some combination of R_{90} and H. In this sense, these two motions generate D_4 .

September 11, 2002