The 8 motions on the square

{Ro, Roo, R1s0, Ra70, H, D, V, D'}

and the operation o of combining the motions form a system
called the dihedral group of order 8, denoted Djy.

Below is the Cayley table showing the result of the applying

the operation to any 2 elements.

o Ry Rgoo  Riso Roro  H D 4 D'
Ry Ry Roo  Riso  Raro H D Vv D'
Rgo | Roo  Riso Ra2ro  Ro D' H 4
Riso | Riso  Roro  Ro Ry 4 D’ D
Rozo | Rero Ro Ryg Raso D Vv D' H
H H 4 D’ Ry Rgo  Riso Raro
D D D' Roro Ry Roo  Riso
V V D’ D Rig0  Ra70 Ry Rgo
D' D' H D Rgo  Riso Raro Ro




Important Aspects of the Cayley Table for D,

1. Closure: No new motions are introduced. If A, B € Dy,
then Ao B € Dy.

2. Identity: Ry acts as an identity motion —
RooA=AoRy=Aforall Ae D,.

3. Inverse: Every element has an inverse motion that
“undoes” what the motion does. For example,
Rgp 0 Ra7o = Ra70 © Rgo = Rp.

4. Associativity: You can check the table that
(AoB)o(C =A0o(BoC(C) forall A, B,C € D,4. This
makes sense if you think of the motions as functions,
and one motion followed by another as composition.

5. The motions are not commutative. For example,
Rggo H =D but H o Rgg = D’. But some motions do
commute: Rgg o Rig0 = Riso © Rgg = Ra70.

6. Although it’s not obvious from the table, all of the
motions can be obtained by some combination of Rgq

and H. In this sense, these two motions generate Dy.
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