The 8 motions on the square

$$
\left\{R_{0}, R_{90}, R_{180}, R_{270}, H, D, V, D^{\prime}\right\}
$$

and the operation \circ of combining the motions form a system called the dihedral group of order 8 , denoted D_{4}.

Below is the Cayley table showing the result of the applying the operation to any 2 elements.

\circ	R_{0}	R_{90}	R_{180}	R_{270}	H	D	V	D^{\prime}
R_{0}	R_{0}	R_{90}	R_{180}	R_{270}	H	D	V	D^{\prime}
R_{90}	R_{90}	R_{180}	R_{270}	R_{0}	D^{\prime}	H	D	V
R_{180}	R_{180}	R_{270}	R_{0}	R_{90}	V	D^{\prime}	H	D
R_{270}	R_{270}	R_{0}	R_{90}	R_{180}	D	V	D^{\prime}	H
H	H	D	V	D^{\prime}	R_{0}	R_{90}	R_{180}	R_{270}
D	D	V	D^{\prime}	H	R_{270}	R_{0}	R_{90}	R_{180}
V	V	D^{\prime}	H	D	R_{180}	R_{270}	R_{0}	R_{90}
D^{\prime}	D^{\prime}	H	D	V	R_{90}	R_{180}	R_{270}	R_{0}

Important Aspects of the Cayley Table for D_{4}

1. Closure: No new motions are introduced. If $A, B \in D_{4}$, then $A \circ B \in D_{4}$.
2. Identity: R_{0} acts as an identity motion $R_{0} \circ A=A \circ R_{0}=A$ for all $A \in D_{4}$.
3. Inverse: Every element has an inverse motion that "undoes" what the motion does. For example, $R_{90} \circ R_{270}=R_{270} \circ R_{90}=R_{0}$.
4. Associativity: You can check the table that $(A \circ B) \circ C=A \circ(B \circ C)$ for all $A, B, C \in D_{4}$. This makes sense if you think of the motions as functions, and one motion followed by another as composition.
5. The motions are not commutative. For example, $R_{90} \circ H=D$ but $H \circ R_{90}=D^{\prime}$. But some motions do commute: $R_{90} \circ R_{180}=R_{180} \circ R_{90}=R_{270}$.
6. Although it's not obvious from the table, all of the motions can be obtained by some combination of R_{90} and H. In this sense, these two motions generate D_{4}.

September 11, 2002

