When checking whether a set G is a group, check whether it :

1. Is closed under the operation: Let $a, b \in G$. Is $a * b \in G$?
2. Is associative: Let $a, b, c \in G$. Does $a *(b * c)=(a * b) * c$?
3. Has an identity: Is there an element $e \in G$ such that for all $a \in G, e * a=a=a * e$?
4. Has inverses: Let $a \in G$. Is there an element $b \in G$ such that $a * b=e=b * a$?
5. Is \mathbb{Z}_{5} under $\times \bmod 5$ a group?
6. Write out the Cayley table for $U(12)$. Is $U(12)$ a group?

September 13, 2002

\mathbb{Z}_{5} under $\times \bmod 5$

1. Closed? Yes: the definition of multiplication $\bmod 5$ is that you always end up with a number in the set $\{0,1,2,3,4\}$.
2. Associative? Yes: modular multiplication is of course associative, since you can do it by simply multiplying the integers (which is associative) and then taking the result mod 5 .
3. Identity? For all $a \in \mathbb{Z}_{5}, a \cdot 1=a \bmod 5$ and $1 \cdot a=a$ $\bmod 5$, so 1 acts as a multiplicative identity $\bmod 5$.
4. Inverses? For each $a \in \mathbb{Z}_{5}$, is there an a^{-1} such that $a \cdot a^{-1}=1$? No! $0 \cdot b \neq 1$ for any b, so 0 does not have a multiplicative inverse!

$U(12)=\{1,5,7,11\}$				
- mod 12	1	5	7	11
1	1	5	7	11
5	5	1	11	7
7	7	11	1	5
11	11	7	5	1

1. Closed under multiplication mod $\mathbf{1 2}$? We can see by looking at the Cayley table that for any $a, b \in U(12), a b \in U(12)$.
2. Associative? Since multiplication is associative, and since $a \bmod 12 \cdot b \bmod 12=(a b) \bmod 12$, multiplication $\bmod 12$ is also associative.
3. Identity? Multiplying by $1 \bmod 12$ leaves every number unchanged, and so 1 is the identity.
4. Inverses? By looking at the Cayley table, I can see that each number has a unique inverse:

$$
(1)^{-1}=1 \quad(5)^{-1}=5 \quad 7^{-1}=7 \quad 11^{-1}=11
$$

Notice: each number is its own inverse!

