When checking whether a set G is a group, check whether it :

- 1. Is closed under the operation: Let $a, b \in G$. Is $a * b \in G$?
- 2. Is associative: Let $a, b, c \in G$. Does a * (b * c) = (a * b) * c?
- 3. Has an identity: Is there an element $e \in G$ such that for all $a \in G$, e * a = a = a * e?
- 4. Has inverses: Let $a \in G$. Is there an element $b \in G$ such that a * b = e = b * a?

- 1. Is \mathbb{Z}_5 under $\times \mod 5$ a group?
- 2. Write out the Cayley table for U(12). Is U(12) a group?

September 13, 2002

\mathbb{Z}_5 under $\times \mod 5$

- 1. Closed? Yes: the definition of multiplication mod 5 is that you always end up with a number in the set $\{0, 1, 2, 3, 4\}.$
- 2. Associative? Yes: modular multiplication is of course associative, since you can do it by simply multiplying the integers (which is associative) and then taking the result mod 5.
- 3. Identity? For all $a \in \mathbb{Z}_5$, $a \cdot 1 = a \mod 5$ and $1 \cdot a = a \mod 5$, so 1 acts as a multiplicative identity mod 5.
- 4. **Inverses?** For each $a \in \mathbb{Z}_5$, is there an a^{-1} such that $a \cdot a^{-1} = 1$? No! $0 \cdot b \neq 1$ for any b, so 0 does not have a multiplicative inverse!

September 13, 2002

$U(12) = \{1, 5, 7, 11\}$				
$\cdot \mod 12$	1	5	7	11
1	1	5	7	11
5	5	1	11	7
7	7	11	1	5
11	11	7	5	1

- 1. Closed under multiplication mod 12? We can see by looking at the Cayley table that for any $a, b \in U(12), ab \in U(12).$
- 2. Associative? Since multiplication is associative, and since $amod12 \cdot bmod12 = (ab)mod12$, multiplication mod 12 is also associative.
- 3. **Identity?** Multiplying by 1 mod 12 leaves every number unchanged, and so 1 is the identity.
- 4. **Inverses?** By looking at the Cayley table, I can see that each number has a unique inverse:

 $(1)^{-1} = 1$ $(5)^{-1} = 5$ $7^{-1} = 7$ $11^{-1} = 11$

Notice: each number is its own inverse!

September 13, 2002