THE BASIC STRUCTURES OF ABSTRACT ALGEBRA:

- 1. **Groups** sets of elements, with one operation that is associative, has an identity, and has inverses.
 - (a) \mathbb{Z} under + is a group
 - (b) \mathbb{Z}_6 under + is a group
 - (c) \mathbb{Z} under * is **not** a group!
- 2. **Rings** sets of elements with two operations, at least one of which is as in groups, the other operation need not have inverses.
 - (a) \mathbb{Z} under + and *
- 3. Fields rings with additive and multiplicative inverses.
 - (a) \mathbb{Q} under + and * is a field
 - (b) \mathbb{R} under + and * is a field
 - (c) \mathbb{Z} under + and * is **not** a field!

September 4, 2002

Some Examples with elements that are not numbers

- 1. The set of all symmetries on a square, under composition, is a group.
- 2. The set of all 2x2 matrices with real entries and non-zero coefficients is a group under matrix multiplication.
- 3. The set of all polynomials with integer coefficients is a ring (with addition as its first operation and multiplication as its second).

September 4, 2002