- 1. For n = 8, 27, find all positive integers less than n and relatively prime to n.
- 2. If $a = 2^4 \cdot 3^2 \cdot 5 \cdot 7^2$ and $b = 2 \cdot 3^3 \cdot 7 \cdot 11$, determine gcd(a, b) and lcm(a, b).
- 3. Determine 51 mod 13.
- 4. gcd(12, 35) = 1, of course. Find integers s and t so that 1 = 12s + 35t. Are s and t unique?

Remember to use the Euclidean Algorithm: use division repeatedly (you may need to look in your books)

September 6, 2002

Let $S = \mathbb{R}$ and define $a \sim b \iff a^2 = b^2$.

- 1. Show \sim is an equivalence relation.
- 2. What are the equivalence classes?

September 6, 2002