1. For $n=8,27$, find all positive integers less than n and relatively prime to n.
2. If $a=2^{4} \cdot 3^{2} \cdot 5 \cdot 7^{2}$ and $b=2 \cdot 3^{3} \cdot 7 \cdot 11$, determine $\operatorname{gcd}(a, b)$ and $\operatorname{lcm}(a, b)$.
3. Determine $51 \bmod 13$.
4. $\operatorname{gcd}(12,35)=1$, of course. Find integers s and t so that $1=12 s+35 t$. Are s and t unique?

Remember to use the Euclidean Algorithm: use division repeatedly (you may need to look in your books)

Let $S=\mathbb{R}$ and define $a \sim b \Longleftrightarrow a^{2}=b^{2}$.

1. Show \sim is an equivalence relation.
2. What are the equivalence classes?

September 6, 2002

