Remember the definition of a group: (Here, I'm denoting the operation by addition for later convenience.)
Def: A group G is a non-empty set with a binary operation (denoted by $a+b$) such that for all $a, b, c \in G$,

1. (Remember the hidden requirement: binary means closed under the operation)
2. $a+(b+c)=(a+b)+c$
3. There is an identity $e \in G$ such that $a+e=e+a=a$ for all $a \in G$. (When the operation is addition, we usually denote the identity by 0 , so this becomes "there is a $0 \in G$ such that $a+0=0+a=a$ for all $a \in G$.)
4. There is an element $-a \in G$ such that $a+(-a)=0$.

December 3, 2004

Prove that the following sets are commutative rings with unity.

1. $R=\{0,2,4,6,8\}$, under addition and multiplication $\bmod 10$.
2. $\mathbb{Z}[\sqrt{2}]=\{a+b \sqrt{2} \mid a, b \in \mathbb{Z}\}$, under ordinary addition and multiplication of real numbers.

December 3, 2004

