1. Let $G$ be a group of permutations. For each $\sigma \in G$, define

$$
\operatorname{sgn}(\sigma)= \begin{cases}+1 & \text { if } \sigma \text { is an even permutation } \\ -1 & \text { if } \sigma \text { is an odd permutation }\end{cases}
$$

Prove that sgn is a homomorphism from $G$ to the multiplicative group $\{+1,-1\}$. What is the kernel?
2. Find the kernel of the homomorphism $p: G \oplus H \rightarrow G$ by $p(g, h)=g$.

November 17, 2004

