Consider $\mathbb{Z}_5 = \{0, 1, 2, 3, 4\}.$

- 1. Is this a group under addition mod 5?
- 2. Is this a group under multiplication mod 5?

September 13, 2004

What are the elements of U(12)? Write out the Cayley table for U(12). Is U(12) a group under multiplication mod 12?

Remember: When checking whether a set G is a group, check whether it :

- 1. Is closed under the operation: Let $a, b \in G$. Is $a * b \in G$?
- 2. Is associative: Let $a, b, c \in G$. Does a * (b * c) = (a * b) * c?
- 3. Has an identity: Is there an element $e \in G \ni$ for all $a \in G, e * a = a = a * e$?
- 4. Has inverses: Let $a \in G$. Is there an element $b \in G$ such that a * b = e = b * a?

September 13, 2004

- 1. $U(12) = \{1, 5, 7, 11\}$, as these are the only integers greater than or equal to 1 and less than 12 which have no divisors in common with 12 other than 1.
- 2. Write out the Cayley table for U(12):

Cayley Table for $U(12)$				
	I			
$\cdot \mod 12$	1	5	7	11
1	1	5	7	11
5	5	1	11	7
7	7	11	1	5
11	11	7	5	1

September 13, 2004

Is U(12) a group under multiplication (mod 12)?

1. Closed under multiplication mod 12?

We can see by looking at the Cayley table that for any $a, b \in U(12), ab \in U(12)$.

2. Associative?

Since multiplication is associative, and since $a \mod 12 \cdot bmod12 = (ab)mod12$, multiplication mod 12 is also associative.

3. Identity?

Multiplying by 1 mod 12 leaves every number unchanged, and so 1 is the identity.

4. Inverses?

By looking at the Cayley table, I can see that each number has a unique inverse:

 $(1)^{-1} = 1$ $(5)^{-1} = 5$ $7^{-1} = 7$ $11^{-1} = 11$

Notice: each number is its own inverse!