Consider $\mathbb{Z}_{5}=\{0,1,2,3,4\}$.

1. Is this a group under addition mod 5 ?
2. Is this a group under multiplication mod 5 ?

What are the elements of $U(12)$?
Write out the Cayley table for $U(12)$.
Is $U(12)$ a group under multiplication $\bmod 12$?
Remember: When checking whether a set G is a group, check whether it :

1. Is closed under the operation: Let $a, b \in G$. Is $a * b \in G$?
2. Is associative: Let $a, b, c \in G$. Does
$a *(b * c)=(a * b) * c$?
3. Has an identity: Is there an element $e \in G \ni$ for all $a \in G, e * a=a=a * e$?
4. Has inverses: Let $a \in G$. Is there an element $b \in G$ such that $a * b=e=b * a$?
5. $U(12)=\{1,5,7,11\}$, as these are the only integers greater than or equal to 1 and less than 12 which have no divisors in common with 12 other than 1 .
6. Write out the Cayley table for $U(12)$:

$$
\text { Cayley Table for } \mathrm{U}(\mathbf{1 2)}
$$

$\cdot \bmod 12$	1	5	7	11
1	1	5	7	11
5	5	1	11	7
7	7	11	1	5
11	11	7	5	1

September 13, 2004

Is $U(12)$ a group under multiplication $(\bmod 12)$?

1. Closed under multiplication mod 12 ?

We can see by looking at the Cayley table that for any $a, b \in U(12), a b \in U(12)$.

2. Associative?

Since multiplication is associative, and since a $\bmod 12 \cdot b \bmod 12=(a b) \bmod 12$, multiplication $\bmod 12$ is also associative.

3. Identity?

Multiplying by $1 \bmod 12$ leaves every number unchanged, and so 1 is the identity.

4. Inverses?

By looking at the Cayley table, I can see that each number has a unique inverse:

$$
(1)^{-1}=1 \quad(5)^{-1}=5 \quad 7^{-1}=7 \quad 11^{-1}=11
$$

Notice: each number is its own inverse!

