Thm 6.2: Properties of Isomorphisms Acting on Elements

Suppose that $\phi: G \rightarrow \bar{G}$ is an isomorphism. Then

1. ϕ carries the identity of G to the identity of \bar{G}.
2. For every integer n and for every group elt $a \in G, \phi\left(a^{n}\right)=[\phi(a)]^{n}$.
3. For any elements $a, b \in G, a b=b a \Leftrightarrow \phi(a) \phi(b)=\phi(b) \phi(a)$.
4. $G=\langle a\rangle$ if and only if $\bar{G}=\langle\phi(a)\rangle$.
5. $|a|=|\phi(a)|$ for all a in G. (That is, isomorphisms preserve order).
6. For a fixed $k \in \mathbb{Z}$ and a fixed $b \in G$, the eqn $x^{k}=b$ has the same number of solutions in G as does the eqn $x^{k}=\phi(b)$ in \bar{G}.
7. If G is finite, then G and \bar{G} have exactly the same number of elements of every order.

Thm 6.3: Properties of Isomorphisms Acting on Groups

Suppose that $\phi: G \rightarrow \bar{G}$ is an isomorphism. Then

1. ϕ^{-1} is an isomorphism from \bar{G} to G.
2. G is Abelian if and only if \bar{G} is Abelian.
3. G is cyclic if and only if \bar{G} is cyclic.
4. If K is a subgroup of G, then $\phi(K)=\{\phi(k) \mid k \in K\}$ is a subgroup of \bar{G}.

In Class Work

Show that $\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}$ is not isomorphic to \mathbb{Z}_{8}, but that $\mathbb{Z}_{2} \oplus \mathbb{Z}_{3}$ is isomorphic to \mathbb{Z}_{6}.

Solutions

Show that $\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}$ is not isomorphic to \mathbb{Z}_{8}, but that $\mathbb{Z}_{2} \oplus \mathbb{Z}_{3}$ is isomorphic to \mathbb{Z}_{6}.

To show $\mathbb{Z}_{\mathbf{2}} \oplus \mathbb{Z}_{\mathbf{4}} \not \approx \mathbb{Z}_{\mathbf{8}}$:

$$
\begin{aligned}
\mathbb{Z}_{8}= & \{0,1,2,3,4,5,6,7\} \\
\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}= & \{(0,0),(1,0),(0,1),(1,1),(0,2) \\
& (1,2),(0,3),(1,3)\}
\end{aligned}
$$

$$
\begin{array}{llll}
|(0,0)|=1 & |(1,0)|=2 & |(0,1)|=4 & |(1,1)|=4 \\
|(0,2)|=2 & |(1,2)|=2 & |(0,3)|=4 & |(1,3)|=4
\end{array}
$$

Because no element in $\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}$ has order $8, \mathbb{Z}_{2} \oplus \mathbb{Z}_{4}$ is not cyclic. Since \mathbb{Z}_{8} is cyclic, this means that there can not be any isomorphism between the two groups (Theorem 6.3, Part 2).

Solutions:

Show that $\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}$ is not isomorphic to \mathbb{Z}_{8}, but that $\mathbb{Z}_{2} \oplus \mathbb{Z}_{3}$ is isomorphic to \mathbb{Z}_{6}.

Is it true that $\mathbb{Z}_{\mathbf{2}} \oplus \mathbb{Z}_{\mathbf{3}} \approx \mathbb{Z}_{\mathbf{6}}$?

$$
\begin{aligned}
\mathbb{Z}_{6} & =\{0,1,2,3,4,5\} \\
\mathbb{Z}_{2} \oplus \mathbb{Z}_{3} & =\{(0,0),(1,0),(0,1),(1,1),(0,2),(1,2),\}
\end{aligned}
$$

In $\mathbb{Z}_{2} \oplus \mathbb{Z}_{3}$, the order of $(1,1)$ is 6 :

$$
(1,1)+(1,1)+\ldots(1,1)=(k \cdot 1 \bmod 2, k \cdot 1 \bmod 3),
$$

and the first time we'll get 0 in both components is when $k=6$.)
Thus we know that both groups are cylic of order 6 . Does that mean they're isomorphic?

Solutions:

Show that $\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}$ is not isomorphic to \mathbb{Z}_{8}, but that $\mathbb{Z}_{2} \oplus \mathbb{Z}_{3}$ is isomorphic to \mathbb{Z}_{6}.

To show that $\mathbb{Z}_{\mathbf{2}} \oplus \mathbb{Z}_{\mathbf{3}} \approx \mathbb{Z}_{\mathbf{6}}$, we need to construct an isomorphism from $\mathbb{Z}_{2} \oplus \mathbb{Z}_{3}$ to \mathbb{Z}_{6} or vice versa.

First, just try to define a function, then see if it's an isomorphism. Elements in $\mathbb{Z}_{2} \oplus \mathbb{Z}_{3}$ have the form (x, y), with $x \in \mathbb{Z}_{2}$ and $y \in Z_{3}$.

To define a function $f: \mathbb{Z}_{6} \rightarrow \mathbb{Z}_{2} \oplus \mathbb{Z}_{3}, f(m)$ has to be something of the form (x, y), where x and y have to either just be something basic in the group like 0 or 1 , or be something that can be gotten from m in some way.
$m \in \mathbb{Z}_{6}$, and we need x to be in \mathbb{Z}_{2} and y to be in \mathbb{Z}_{3}.

Solutions

Show that $\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}$ is not isomorphic to \mathbb{Z}_{8}, but that $\mathbb{Z}_{2} \oplus \mathbb{Z}_{3}$ is isomorphic to \mathbb{Z}_{6}.

To show that $\mathbb{Z}_{\mathbf{2}} \oplus \mathbb{Z}_{\mathbf{3}} \approx \mathbb{Z}_{\mathbf{6}}$, we need to construct an isomorphism.
Try defining $f: \mathbb{Z}_{6} \rightarrow \mathbb{Z}_{2} \oplus \mathbb{Z}_{3}$ by $f(m)=(m \bmod 2, m \bmod 3)$.

Solutions

Define $f: \mathbb{Z}_{6} \rightarrow \mathbb{Z}_{2} \oplus \mathbb{Z}_{3}$ by $f(m)=(m \bmod 2, m \bmod 3)$.
Is f well-defined?

$$
\begin{aligned}
a=b \bmod 6 & \Longrightarrow 6 \mid(a-b) \\
& \Longrightarrow 2 \mid(a-b) \text { and } 3 \mid(a-b) \\
& \Longrightarrow a=b \bmod 2 \operatorname{and} a=b \bmod 3 \\
& \Longrightarrow(a \bmod 2, a \bmod 3) \\
& =(b \bmod 2, b \bmod 3)
\end{aligned}
$$

Thus $a=b \Longrightarrow f(a)=f(b)$, so f is well-defined.

Solutions

Define $f: \mathbb{Z}_{6} \rightarrow \mathbb{Z}_{2} \oplus \mathbb{Z}_{3}$ by $f(m)=(m \bmod 2, m \bmod 3)$.
Is $f \mathbf{1 - 1}$?

$$
\begin{aligned}
f(a)=f(b) & \Longrightarrow(a \bmod 2, a \bmod 3)=(b \bmod 2, b \bmod 3) \\
& \Longrightarrow a=b \bmod 2 \text { and } a=b \bmod 3 \\
& \Longrightarrow 2 \mid(a-b) \text { and } 3 \mid(a-b) \\
& \Longrightarrow(\text { since } \operatorname{gcd}(2,3)=1), 6 \mid(a-b) \\
& \Longrightarrow a=b \bmod 6
\end{aligned}
$$

Thus $f(a)=f(b) \Longrightarrow a=b$ in \mathbb{Z}_{6}, so f is 1-1.

Solutions

Define $f: \mathbb{Z}_{6} \rightarrow \mathbb{Z}_{2} \oplus \mathbb{Z}_{3}$ by $f(m)=(m \bmod 2, m \bmod 3)$.
Is f onto?
For this function, we can see that it's onto by figuring out what f of each element is.

$$
\begin{aligned}
f(0) & =0 \\
f(1) & =(1,1) \\
f(2) & =(0,2) \\
f(3) & =(1,0) \\
f(4) & =(0,1) \\
f(5) & =(1,2)
\end{aligned}
$$

Thus for every $(m, n) \in \mathbb{Z}_{2} \oplus \mathbb{Z}_{3}$, there exists an $a \in \mathbb{Z}_{6}$ such that $f(a)=(m, n)$, so f is onto.
(This shows one-to-one as well, of course)

Alternative Approach to showing f is onto:

Define $f: \mathbb{Z}_{6} \rightarrow \mathbb{Z}_{2} \oplus \mathbb{Z}_{3}$ by $f(m)=(m \bmod 2, m \bmod 3)$.
2 and 3 relatively prime $\Longrightarrow \exists s, t$ such that $1=2 s+3 t$.
In fact, $1=2(-1)+3(1)$.
Let $(a, b) \in \mathbb{Z}_{2} \oplus \mathbb{Z}_{3}$. Need to find a $g \in \mathbb{Z}_{6}$ such that $f(g)=(a, b)$.
Define $g=3 t a+2 s b$. That is, define $g=3(1) a-2(-1) b=3 a-2 b$.
NTS $f(g)=(a, b)$.
Then

$$
\begin{aligned}
f(g) & =f(3 a-2 b) \\
& =(3 a-2 b \bmod 2,3 a-2 b \bmod 3) \\
& =(3 a \bmod 2,-2 b \bmod 3) \\
& =((3 \bmod 2) a,(-2 \bmod 3) b) \\
\text { klensky) } & =(a, b) \cdot ._{\text {In-Class Work }}
\end{aligned}
$$

Solutions

Define $f: \mathbb{Z}_{6} \rightarrow \mathbb{Z}_{2} \oplus \mathbb{Z}_{3}$ by $f(m)=(m \bmod 2, m \bmod 3)$.

Is f operation preserving?

The operation in \mathbb{Z}_{6} is addition mod 6 . The operation in $\mathbb{Z}_{2} \oplus \mathbb{Z}_{3}$ is addition mod 2 in the first component, addition mod 3 in the second component. We'll denote this operation as \star, just to indicate where it's showing up.

$$
\begin{aligned}
f(a+b \bmod 6) & =(a+b \bmod 2, a+b \bmod 3) \\
& =(a \bmod 2, a \bmod 3) \\
& \star(b \bmod 2, b \bmod 3) \\
& =f(a) \star f(b) .
\end{aligned}
$$

Thus f is operation preserving.

