Thm 6.2: Properties of Isomorphisms Acting on Elements

Suppose that $\phi: \mathcal{G} \to \overline{\mathcal{G}}$ is an isomorphism. Then

- 1. ϕ carries the identity of G to the identity of \overline{G} .
- 2. For every integer *n* and for every group elt $a \in G$, $\phi(a^n) = [\phi(a)]^n$.
- 3. For any elements $a, b \in G$, $ab = ba \Leftrightarrow \phi(a)\phi(b) = \phi(b)\phi(a)$.

4.
$$G = \langle a \rangle$$
 if and only if $\overline{G} = \langle \phi(a) \rangle$.

- 5. $|a| = |\phi(a)|$ for all a in G. (That is, isomorphisms preserve order).
- 6. For a fixed $k \in \mathbb{Z}$ and a fixed $b \in G$, the eqn $x^k = b$ has the same number of solutions in G as does the eqn $x^k = \phi(b)$ in \overline{G} .
- 7. If G is finite, then G and \overline{G} have exactly the same number of elements of every order.

Math 321-Abstracti (Sklensky)

In-Class Work

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三日 うらぐ

Thm 6.3: Properties of Isomorphisms Acting on Groups

Suppose that $\phi: G \to \overline{G}$ is an isomorphism. Then

- 1. ϕ^{-1} is an isomorphism from \overline{G} to G.
- 2. *G* is Abelian if and only if \overline{G} is Abelian.
- 3. *G* is cyclic if and only if \overline{G} is cyclic.
- If K is a subgroup of G, then φ(K) = {φ(k)|k ∈ K} is a subgroup of G.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三日 うらぐ

In Class Work

Show that $\mathbb{Z}_2 \oplus \mathbb{Z}_4$ is not isomorphic to \mathbb{Z}_8 , but that $\mathbb{Z}_2 \oplus \mathbb{Z}_3$ is isomorphic to \mathbb{Z}_6 .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - シ۹ペ

Show that $\mathbb{Z}_2 \oplus \mathbb{Z}_4$ is not isomorphic to \mathbb{Z}_8 , but that $\mathbb{Z}_2 \oplus \mathbb{Z}_3$ is isomorphic to \mathbb{Z}_6 .

To show $\mathbb{Z}_{2} \oplus \mathbb{Z}_{4} \not\approx \mathbb{Z}_{8}$: $\mathbb{Z}_{8} = \{0, 1, 2, 3, 4, 5, 6, 7\}$ $\mathbb{Z}_{2} \oplus \mathbb{Z}_{4} = \{(0, 0), (1, 0), (0, 1), (1, 1), (0, 2), (1, 2), (0, 3), (1, 3)\}$ $|(0, 0)| = 1 \qquad |(1, 0)| = 2 \qquad |(0, 1)| = 4 \qquad |(1, 1)| = 4$ $|(0, 2)| = 2 \qquad |(1, 2)| = 2 \qquad |(0, 3)| = 4 \qquad |(1, 3)| = 4$

Because no element in $\mathbb{Z}_2 \oplus \mathbb{Z}_4$ has order 8, $\mathbb{Z}_2 \oplus \mathbb{Z}_4$ is not cyclic. Since \mathbb{Z}_8 is cyclic, this means that there can not be any isomorphism between the two groups (Theorem 6.3, Part 2).

Math 321-Abstracti (Sklensky)

In-Class Work

Show that $\mathbb{Z}_2 \oplus \mathbb{Z}_4$ is not isomorphic to \mathbb{Z}_8 , but that $\mathbb{Z}_2 \oplus \mathbb{Z}_3$ is isomorphic to \mathbb{Z}_6 .

Is it true that $\mathbb{Z}_2 \oplus \mathbb{Z}_3 \approx \mathbb{Z}_6$?

$$\begin{split} \mathbb{Z}_6 &= & \{0,1,2,3,4,5\} \\ \mathbb{Z}_2 \oplus \mathbb{Z}_3 &= & \{(0,0),(1,0),(0,1),(1,1),(0,2),(1,2),\} \end{split}$$

In $\mathbb{Z}_2 \oplus \mathbb{Z}_3$, the order of (1,1) is 6:

 $(1,1) + (1,1) + \dots (1,1) = (k \cdot 1 \mod 2, k \cdot 1 \mod 3),$

and the first time we'll get 0 in both components is when k=6.)

Thus we know that both groups are cylic of order 6. Does that mean they're isomorphic?

Math 321-Abstracti (Sklensky)

Show that $\mathbb{Z}_2 \oplus \mathbb{Z}_4$ is not isomorphic to \mathbb{Z}_8 , but that $\mathbb{Z}_2 \oplus \mathbb{Z}_3$ is isomorphic to \mathbb{Z}_6 .

To **show** that $\mathbb{Z}_2 \oplus \mathbb{Z}_3 \approx \mathbb{Z}_6$, we need to construct an isomorphism from $\mathbb{Z}_2 \oplus \mathbb{Z}_3$ to \mathbb{Z}_6 or vice versa.

First, just try to define a function, then see if it's an isomorphism.

Elements in $\mathbb{Z}_2 \oplus \mathbb{Z}_3$ have the form (x, y), with $x \in \mathbb{Z}_2$ and $y \in Z_3$.

To define a function $f : \mathbb{Z}_6 \to \mathbb{Z}_2 \oplus \mathbb{Z}_3$, f(m) has to be something of the form (x, y), where x and y have to either just be something basic in the group like 0 or 1, or be something that can be gotten from m in some way.

 $m \in \mathbb{Z}_6$, and we need x to be in \mathbb{Z}_2 and y to be in \mathbb{Z}_3 .

Math 321-Abstracti (Sklensky)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Show that $\mathbb{Z}_2 \oplus \mathbb{Z}_4$ is not isomorphic to \mathbb{Z}_8 , but that $\mathbb{Z}_2 \oplus \mathbb{Z}_3$ is isomorphic to \mathbb{Z}_6 .

To **show** that $\mathbb{Z}_2 \oplus \mathbb{Z}_3 \approx \mathbb{Z}_6$, we need to construct an isomorphism.

Try defining $f : \mathbb{Z}_6 \to \mathbb{Z}_2 \oplus \mathbb{Z}_3$ by $f(m) = (m \mod 2, m \mod 3)$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Define $f : \mathbb{Z}_6 \to \mathbb{Z}_2 \oplus \mathbb{Z}_3$ by $f(m) = (m \mod 2, m \mod 3)$.

Is f well-defined?

$$a = b \mod 6 \implies 6|(a - b)$$

 $\implies 2|(a - b) \text{ and } 3|(a - b)$
 $\implies a = b \mod 2 \text{ and } a = b \mod 3$
 $\implies (a \mod 2, a \mod 3)$
 $= (b \mod 2, b \mod 3)$

Thus $a = b \Longrightarrow f(a) = f(b)$, so f is well-defined.

Math 321-Abstracti (Sklensky)

In-Class Work

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - シ۹ペ

Define
$$f : \mathbb{Z}_6 \to \mathbb{Z}_2 \oplus \mathbb{Z}_3$$
 by $f(m) = (m \mod 2, m \mod 3)$.
Is f 1-1?

$$f(a) = f(b) \implies (a \mod 2, a \mod 3) = (b \mod 2, b \mod 3)$$

$$\implies a = b \mod 2 \text{ and } a = b \mod 3$$

$$\implies 2|(a - b) \text{ and } 3|(a - b)$$

$$\implies (\text{since } \gcd(2,3)=1), 6|(a - b)$$

$$\implies a = b \mod 6$$

Thus $f(a) = f(b) \Longrightarrow a = b$ in \mathbb{Z}_6 , so f is 1-1.

Math 321-Abstracti (Sklensky)

October 13, 2010 9 / 12

・ロト・4日ト・モート・モー うへで

Define $f : \mathbb{Z}_6 \to \mathbb{Z}_2 \oplus \mathbb{Z}_3$ by $f(m) = (m \mod 2, m \mod 3)$.

Is f onto?

For this function, we can see that it's onto by figuring out what f of each element is.

$$f(0) = 0$$

$$f(1) = (1,1)$$

$$f(2) = (0,2)$$

$$f(3) = (1,0)$$

$$f(4) = (0,1)$$

$$f(5) = (1,2)$$

Thus for every $(m, n) \in \mathbb{Z}_2 \oplus \mathbb{Z}_3$, there exists an $a \in \mathbb{Z}_6$ such that f(a) = (m, n), so f is onto.

(This shows one-to-one as well, of course) Math 321-Abstracti (Sklensky) In-Class Work

Alternative Approach to showing f is onto: Define $f : \mathbb{Z}_6 \to \mathbb{Z}_2 \oplus \mathbb{Z}_3$ by $f(m) = (m \mod 2, m \mod 3)$.

2 and 3 relatively prime $\implies \exists s, t \text{ such that } 1 = 2s + 3t$. In fact, 1 = 2(-1) + 3(1).

Let $(a, b) \in \mathbb{Z}_2 \oplus \mathbb{Z}_3$. Need to find a $g \in \mathbb{Z}_6$ such that f(g) = (a, b). Define g = 3ta + 2sb. That is, define g = 3(1)a - 2(-1)b = 3a - 2b. NTS f(g) = (a, b).

Then

$$f(g) = f(3a-2b)$$

= $(3a-2b \mod 2, 3a-2b \mod 3)$
= $(3a \mod 2, -2b \mod 3)$
= $((3 \mod 2)a, (-2 \mod 3)b)$
= $(a, b).$ In-Class Work October 13, 2010 11/12

Define $f : \mathbb{Z}_6 \to \mathbb{Z}_2 \oplus \mathbb{Z}_3$ by $f(m) = (m \mod 2, m \mod 3)$.

Is f operation preserving?

The operation in \mathbb{Z}_6 is addition mod 6. The operation in $\mathbb{Z}_2 \oplus \mathbb{Z}_3$ is addition mod 2 in the first component, addition mod 3 in the second component. We'll denote this operation as \star , just to indicate where it's showing up.

$$f(a + b \mod 6) = (a + b \mod 2, a + b \mod 3)$$

= (a \mod 2, a \mod 3)
*(b \mod 2, b \mod 3)
= f(a) * f(b).

Thus *f* is operation preserving.

Math 321-Abstracti (Sklensky)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三日 うらぐ