Notation:

What we're trying to denote	If the operation is addition	anything but addition	
the inverse of g	-g	g^{-1}	
<i>g</i> * <i>g n</i> times	ng	g ⁿ	ng does not mean $n \times g$, it means $g + g + g \dots + g$.
the identity	0 = e	1 = e	

Notation:

What we're trying to denote	If the operation is addition	anything but addition	
the inverse of g	-g	g^{-1}	
g * g <i>n</i> times	ng	g ⁿ	ng does not mean $n \times g$, it means $g + g + g \dots + g$.
the identity	0 = e	1 = e	
g, 0 times	0g = 0	$g^0 = 1$	

Notation:

What we're trying to denote	If the operation is addition	anything but addition	
the inverse of g	-g	g^{-1}	
g * g n times	ng	g ⁿ	ng does not mean $n \times g$, it means $g + g + g \dots + g$.
the identity	0 = e	1 = e	
g, 0 times	0g = 0	$g^{0} = 1$	
g ⁿ * g ^m	ng + mg = (n + m)g	$g^n g^m = g^{n+m}$	

Math 321-Abstracti (Sklensky)

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Question:

Is
$$(gh)^n = g^n h^n$$
?

Math 321-Abstracti (Sklensky)

In-Class Work

September 15, 2010 2 / 8

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Definition:

If G is a group, then G is **Abelian** if ab = ba for all $a, b \in G$. In other words, G is Abelian if and only if the operation is commutative.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろのぐ

In Class Work

Which of the following groups are Abelian?

- 1. $\mathbb{Z}_5,$ under addition mod 5
- 2. U(12), under multiplication mod 12
- 3. $\mathbb{Z}_2 \oplus \mathbb{Z}_3$, under $(+ \mod 12, + \mod 3)$
- 4. *D*₄, under composition

5. $S = \{f : \mathbb{R} \to \mathbb{R} | f \text{ is one-to-one and onto} \}$, under composition

Math 321-Abstracti (Sklensky)

In-Class Work

September 15, 2010 4 / 8

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

In Class Work

- 1. What is **the order of** D_4 ? That is, what is $|D_4|$?
- 2. In D_4 , what is **the order of** the element H (reflection across the horizontal axis)? That is, what is |H|? How about the order of the rotation R_{90} , $|R_{90}|$?
- 3. What is $|GL(2,\mathbb{R})|$?
- 4. In \mathbb{Z}_8 , what is |2|? How about |3|?

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ ― 臣 … のへで

Solutions:

- 1. What is the order of D_4 ? That is, what is $|D_4|$? Order of a group= the number of elements: $|D_4| = 8$.
- 2. In D_4 , what is *the order of* the element the reflection H, |H|? How about the order of the rotation R_{90} , $|R_{90}|$?

Order of an element = (in this case) smallest # of times we can do the motion to end up equivalent to the identity motion.

$$|H| = 2, |R_{90}| = 4.$$

3. What is $|GL(2,\mathbb{R})|$?

Since $GL(2,\mathbb{R})$ is the set of all 2×2 matrices with entries in \mathbb{R} and non-zero determinants, $|GL(2,\mathbb{R})| = \infty$.

Math 321-Abstracti (Sklensky)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろのぐ

Solutions:

4. In \mathbb{Z}_8 , what is |2|? How about |3|?

 $2+2 \mod 8 = 4$, $2+2+2 \mod 8 = 6$, $2+2+2+2 \mod 8 = 0$. Thus the smallest number of 2's we can add to get the identity is 4, so |2| = 4.

As for 3, we're not going to get to $3 + 3 + \ldots + 3 = 0 \mod 8$ until we have eight 3's.

(Check it out!)

Thus |3| = 8.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろのぐ

- 1. Find $|\mathbb{Z}|$. In \mathbb{Z} , find |2|.
- 2. Find |U(p)|. In U(5), find |2|. Remember, $U(p) = \{a \in \mathbb{Z}^+ | a is a group under multiplication mod <math>p$. The identity is of course 1.
- Find |Z₄ ⊕ U(5)|. In Z₄ ⊕ U(5), find |(2,2)|.
 Remember: Z₄ ⊕ U(5) = {(a, b)|a ∈ Z₄, b ∈ U(5)} is a group under the operation (+ mod 4, · mod 5). Also, because 0 is the identity of Z₄ and 1 is the identity of U(5), the identity element of Z₄ ⊕ U(5) is (0,1).

イロト 不得 トイヨト イヨト 二日

- 1. $|\mathbb{Z}| = \infty$ No matter how many times you add 2 to itself, you never get 0, so $|2| = \infty$. What's |n|, $n \neq 0$?
- 2. If p is prime, |U(p)| = p 1, since every positive integer less than p is relatively prime to p. As for |2| in U(5):

 $2 \cdot 2 \mod 5 \equiv 4$ $2 \cdot 2 \cdot 2 \mod 5 \equiv 3$ $2 \cdot 2 \cdot 2 \cdot 2 \mod 5 \equiv 1$

Thus |2| in U(5) is 4.

3. $|\mathbb{Z}_4 \oplus U(5)|$: Since each element of \mathbb{Z}_4 can be paired with any element of U(5), $|\mathbb{Z}_4 \oplus U(5)| = |\mathbb{Z}_4| \times |U(5)| = 4 \times 4 = 16.$ As for |(2,2)|: (2,2) * (2,2) = (0,4) $(2,2) * (2,2) * (2,2) \stackrel{\scriptscriptstyle <}{=} (2,3) \stackrel{\scriptscriptstyle >}{=} (2,3) \stackrel{\scriptscriptstyle >}{=} (2,3) \stackrel{\scriptscriptstyle >}{=} (2,3) \stackrel{\scriptscriptstyle >}{=} (3,3) \stackrel{\scriptscriptstyle >}$

Math 321-Abstracti (Sklensky)