Notation:

What we're trying to denote	If the operation is addition	anything but addition	
the inverse of g	$-g$	g^{-1}	g^{n}
$g * g$ times	$n g$	$n g$ does not mean $n \times g$, it means $g+g+g \ldots+g$.	
the identity	$0=e$	$1=e$	

Notation:

What we're trying to denote	If the operation is addition	anything but addition	
the inverse of g	$-g$	g^{-1}	g^{n}
$g * g$ times	$n g$	$n g$ does not mean $n \times g$, it means $g+g+g \ldots+g$.	
the identity	$0=e$	$1=e$	
$g, 0$ times	$0 g=0$	$g^{0}=1$	

Notation:

What we're trying to denote	If the operation is addition	anything but addition
the inverse of g	$-g$	g^{-1}
$g * g$ times	$n g$	g^{n}
the identity	$0=e$	$n g$ does not mean $n \times g$, it means $g+g+g \ldots+g$.
$g, 0$ times	$0 g=0$ $g^{n} * g^{m}$	$1=e$ $n g+m g$ $=(n+m) g$

Question:

$$
\text { Is }(g h)^{n}=g^{n} h^{n} ?
$$

Definition:

If G is a group, then G is Abelian if $a b=b a$ for all $a, b \in G$. In other words, G is Abelian if and only if the operation is commutative.

In Class Work

Which of the following groups are Abelian?

1. \mathbb{Z}_{5}, under addition $\bmod 5$
2. $U(12)$, under multiplication mod 12
3. $\mathbb{Z}_{2} \oplus \mathbb{Z}_{3}$, under $(+\bmod 12,+\bmod 3)$
4. D_{4}, under composition
5. $S=\{f: \mathbb{R} \rightarrow \mathbb{R} \mid f$ is one-to-one and onto $\}$, under composition

In Class Work

1. What is the order of D_{4} ? That is, what is $\left|D_{4}\right|$?
2. In D_{4}, what is the order of the element H (reflection across the horizontal axis)? That is, what is $|H|$? How about the order of the rotation $R_{90},\left|R_{90}\right|$?
3. What is $|G L(2, \mathbb{R})|$?
4. In \mathbb{Z}_{8}, what is $|2|$? How about $|3|$?

Solutions:

1. What is the order of D_{4} ? That is, what is $\left|D_{4}\right|$?

Order of a group $=$ the number of elements: $\left|D_{4}\right|=8$.
2. In D_{4}, what is the order of the element the reflection $H,|H|$? How about the order of the rotation $R_{90},\left|R_{90}\right|$?
Order of an element $=$ (in this case) smallest \# of times we can do the motion to end up equivalent to the identity motion.
$|H|=2,\left|R_{90}\right|=4$.
3. What is $|G L(2, \mathbb{R})|$?

Since $G L(2, \mathbb{R})$ is the set of all 2×2 matrices with entries in \mathbb{R} and non-zero determinants, $|G L(2, \mathbb{R})|=\infty$.

Solutions:

4. In \mathbb{Z}_{8}, what is $|2|$? How about $|3|$?
$2+2 \bmod 8=4,2+2+2 \bmod 8=6,2+2+2+2 \bmod 8=0$.
Thus the smallest number of 2 's we can add to get the identity is 4 , so $|2|=4$.

As for 3 , we're not going to get to $3+3+\ldots+3=0 \bmod 8$ until we have eight 3's.
(Check it out!)
Thus $|3|=8$.

1. Find $|\mathbb{Z}|$. In \mathbb{Z}, find $|2|$.
2. Find $|U(p)|$. In $U(5)$, find $|2|$.

Remember, $U(p)=\left\{a \in \mathbb{Z}^{+} \mid a<p\right.$ and $\left.\operatorname{gcd}(a, p)=1\right\}$ is a group under multiplication mod p. The identity is of course 1 .
3. Find $\left|\mathbb{Z}_{4} \oplus U(5)\right|$. In $\mathbb{Z}_{4} \oplus U(5)$, find $|(2,2)|$.

Remember: $\mathbb{Z}_{4} \oplus U(5)=\left\{(a, b) \mid a \in \mathbb{Z}_{4}, b \in U(5)\right\}$ is a group under the operation $(+\bmod 4, \cdot \bmod 5)$. Also, because 0 is the identity of \mathbb{Z}_{4} and 1 is the identity of $U(5)$, the identity element of $\mathbb{Z}_{4} \oplus U(5)$ is $(0,1)$.

1. $|\mathbb{Z}|=\infty$

No matter how many times you add 2 to itself, you never get 0 , so $|2|=\infty$.
What's $|n|, n \neq 0$?
2. If p is prime, $|U(p)|=p-1$, since every positive integer less than p is relatively prime to p.
As for $|2|$ in $U(5)$:

$$
\begin{aligned}
2 \cdot 2 \bmod 5 & \equiv 4 \\
2 \cdot 2 \cdot 2 \bmod 5 & \equiv 3 \\
2 \cdot 2 \cdot 2 \cdot 2 \bmod 5 & \equiv 1
\end{aligned}
$$

Thus $|2|$ in $U(5)$ is 4 .
3. $\left|\mathbb{Z}_{4} \oplus U(5)\right|:$

Since each element of \mathbb{Z}_{4} can be paired with any element of $U(5)$,
$\left|\mathbb{Z}_{4} \oplus U(5)\right|=\left|\mathbb{Z}_{4}\right| \times|U(5)|=4 \times 4=16$.
As for $|(2,2)|$:

$$
\begin{aligned}
& (2,2) *(2,2)=(0,4)
\end{aligned}
$$

