Fibonacci Numbers

The Fibonacci Sequence:

 $\{1,1,2,3,5,8,13,21,34,55,\ldots\}$

- 1. Begin with two 1's: $\{1, 1, \dots$
- Create the next term by adding the previous two
- 3. Return to Step 2

Notation:

 F_N = the Nth term in the Fibonacci Sequence.

Example: $F_6 = 8$

 F_{N+1} = the term after the Nth term in the Fibonacci Sequence $F_N + 1$ = the Nth term in the Fibonacci Sequence, plus 1.

Formula for the Nth Fibonacci Number:

$$F_N = F_{N-1} + F_{N-2} \quad \text{and} \quad F_N = F_{N-1} + F_{N-2} \quad \text{and} \quad F_N = F_{N-1} + F_{N-2} + F_{N-2}$$

In Class Work

- 1. Given that $F_{19} = 4181$ and $F_{20} = 6765$, find
 - (a) F_{21}
 - (b) F_{18}
- 2. Given that $F_{31} = 1346269$ and $F_{33} = 3524578$, find
 - (a) F_{32}
 - (b) F_{34}

Solutions

- 1. Given that $F_{19} = 4181$ and $F_{20} = 6765$, find
 - (a) F_{21}

$$F_{21} = F_{20} + F_{19} = 6765 + 4181 = 10946$$

(b) F_{18}

$$F_{20} = F_{19} + F_{18} \Rightarrow F_{18} = F_{20} - F_{19} = 6765 - 4181 = 2584$$

- 2. Given that $F_{31} = 1346269$ and $F_{33} = 3524578$, find
 - (a) F_{32}

$$F_{33} = F_{32} + F_{31} \Rightarrow F_{32} = F_{33} - F_{31} = 3524578 - 1346269 = 2178309$$

(b) F_{34}

$$F_{34} = F_{33} + F_{32} = F_{33} + (F_{33} - F_{31}) = 3524578 + 2178309 = 5702887$$

In Class Work

Binet's Formula:

$$F_{N} = \frac{\left(\frac{1+\sqrt{5}}{2}\right)^{N} - \left(\frac{1-\sqrt{5}}{2}\right)^{N}}{\sqrt{5}} = \frac{\varphi^{N} - \left(\frac{1}{\varphi}\right)^{N}}{\sqrt{5}}$$

Verify that Binet's formula does indeed give the correct Fibonacci number, for N = 4 and N = 7, using your calculator.

Be careful with parentheses - you need a lot. On $\it my$ calculator, I need to type:

$$\left(\frac{((1+\sqrt{(5)})/2)^N-((1-\sqrt{(5)})/2)^N}{/\sqrt{(5)}}\right)$$

◆ロト ◆問 > ◆ 恵 > ◆ 恵 > ・ 恵 ・ り Q ②