Recall: A line labeled as in Figure 1 is cut in Extreme and Mean ratio when

Figure 1:

When the above relationship is true, let $\overline{CB} = 1$ $\overline{AC} = x$, so $\overline{AB} = 1 + x$.

1. Rewrite the equation $\frac{\overline{AB}}{\overline{AC}} = \frac{\overline{AC}}{\overline{CB}}$ using the values shown above.

Substituting 1 in for \overline{CB} , x in for \overline{AC} , and 1 + x in for \overline{AB} results in the equation

$$\frac{1+x}{x} = \frac{x}{1}.$$

2. Solve the equation for x.

Hint: Quadratic formula: if
$$ax^2 + bx + c = 0$$
, then either $x = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$ or $x = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$.

$$\frac{1+x}{x} = \frac{x}{1}.$$
Cross-multiplying gives us
$$(1+x)(1) = (x)(x)$$

$$\Rightarrow 1+x = x^{2}.$$

Subtracting 1 + x from both sides, $x^2 - x - 1$

$$-x - 1 = 0.$$

Use the quadratic formula, with a = 1, b = -1, c = -1

$$x = \frac{-(-1) \pm \sqrt{(-1)^2 - 4(1)(-1)}}{2(1)}$$
$$= \frac{1 \pm \sqrt{1+4}}{2}$$
$$= \frac{1 \pm \sqrt{5}}{2}$$

Since $\frac{1-\sqrt{5}}{2} < 0$, and since we know x is a length, $x = \frac{1+\sqrt{5}}{2}$.