How Close Is Close Enough?

Goal: Develop standards to use when investigating whether an artist or architect may have intended the ratio of two dimensions to be some specific number.

- ▶ Specifically: If we have two measured lengths, A_m and B_m , and the ratio of the measured lengths $\frac{A_m}{B_m}$ is close to an interesting ratio R, develop a standard for judging if $\frac{A_m}{B_m}$ is close enough to R to conclude the closeness may have been intentional.
- Actual lengths are unknowable
- The measured lengths are not the actual lengths. Use margins of error, or an error range, about each measurement in which we are confident the actual length must fall.

Recall:

- ► Always give a margin of error for your measurements.
 - Must be big enough so sure actual length is really in that range
 - At the same time, should be as small as possible (and still be true)
- \blacktriangleright If you find a length to be 20 cm $\,\pm\,1$ cm , then

Measured length L_m : $L_m = 20 \text{ cm}$ Actual length L_a : 19 cm $\leq L_a \leq 21 \text{ cm}$

 \blacktriangleright If you instead find the length to be 20 cm $\,\pm\,1\%$, then

 $\begin{array}{rcl} \mbox{Measured length } L_m: \ L_m &=& 20 \ \mbox{cm} \\ \mbox{Actual length } L_a: \ 0.99(20) \ \mbox{cm} &\leq& L_a &\leq 1.01(20) \ \mbox{cm} \\ &\Rightarrow& 19.8 \ \mbox{cm} &\leq& L_a &\leq 20.2 \ \mbox{cm}. \end{array}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

How Close Is Close Enough?

Approach: Use margins of error for the measurements A_m and B_m to find a range surrounding $\frac{A_m}{B_m}$, so that if R lies in that range, we'll say the **actual ratio** $\frac{A_a}{B_a}$ could be R.

Example:

- Measured ratio of width to height in a painting: $\frac{W_m}{H_m} = 1.4$
- We wonder: did the artist intend actual ratio $\frac{W_a}{H_a}$ to be $\sqrt{2} \approx 1.414$?
- Use knowledge of accuracy of measurements (i.e. known margins of error) for W_m and H_m to find a range about 1.4 in which I am sure the *actual ratio* $\frac{W_a}{H_a}$ falls.
- Suppose we find that range is $1.39 \le \frac{W_a}{H_a} \le 1.41$.
- ► 1.414 doesn't fall in that range. Reject that *actual ratio* $\frac{W_a}{H_a} = \sqrt{2}$.

Math 122 - Math in Art (Sklensky)

イロト イヨト イヨト イヨト ヨー のくの

Finding range of values for a ratio, 1% error :

Suppose we know:

► The measured height is within 1% of the actual height:

 $.99h_m \le h_a \le 1.01h_m$

▶ The measured width is within 1% of the actual width:

 $.99w_m \le w_a \le 1.01w_m.$

Then the actual ratio of these lengths also falls in a range:

smallest <i>h_m</i>	_ h _a _	largest h_m
largest w _m	$\geq \overline{W_a} \geq$	smallest w _m
.99 <i>h</i> m	_ h_	$1.01 h_{m}$
$\overline{1.01w_m}$	$\geq \overline{W_a} \geq$.99 <i>w</i> _m
$.98\left(\frac{h_m}{w_m}\right)$	$\leq rac{h_a}{w_a} \leq$	$1.02\left(\frac{h_m}{w_m}\right)$

Conclusion: if margin of error for both measurements is $\pm 1\%$, then the margin of error for the ratio will be (more or less) $\pm 2\%$, $\pm 2\%$, $\pm 2\%$

Math 122 - Math in Art (Sklensky)

Finding range of values for a ratio, 2% error :

Suppose we know:

► The measured height is within 2% of the actual height:

 $.98h_m \le h_a \le 1.02h_m$

► The measured width is within 2% of the actual width:

 $.98w_m \le w_a \le 1.02w_m.$

Then the actual ratio of these lengths also falls in a range:

$$\frac{\text{smallest } h_m}{\text{largest } w_m} \leq \frac{h_a}{w_a} \leq \frac{\text{largest } h_m}{\text{smallest } w_m}$$
$$\frac{.98h_m}{1.02w_m} \leq \frac{h_a}{w_a} \leq \frac{1.02h_m}{.98w_m}$$
$$.96\left(\frac{h_m}{w_m}\right) \leq \frac{h_a}{w_a} \leq 1.04\left(\frac{h_m}{w_m}\right)$$

Conclusion: if margin of error for both measurements is $\pm 2\%$, then the margin of error for the ratio will be (more or less) $\pm 4\%$, $\pm 2\%$, $\pm 2\%$

Math 122 - Math in Art (Sklensky)