Summary: Derivatives Found Using Limit Definition

$$
\begin{aligned}
f(x)=5 & \Longrightarrow f^{\prime}(x)=0 \text { (Fri 9/24) } \\
f(x)=2 x & \Longrightarrow f^{\prime}(x)=2(\text { Fri 9/24) } \\
f(x)=x^{2} & \Longrightarrow f^{\prime}(x)=2 x^{1}(\text { Fri 9/24) } \\
f(x)=x^{3} & \Longrightarrow f^{\prime}(x)=3 x^{2} \text { (Fri 9/24) } \\
f(x)=x^{-1} & \Longrightarrow f^{\prime}(x)=-x^{-2} \text { (Fri 9/24) } \\
f(x)=x^{1 / 2} & \Longrightarrow f^{\prime}(x)=\frac{1}{2} x^{-1 / 2} \text { (Reading for Fri) } \\
& \\
f(x)=x^{2}-3 x & \Longrightarrow f^{\prime}(x)=2 x-3 \text { (Th 9/23) } \\
f(x)=2 x^{2}-3 x & \Longrightarrow f^{\prime}(x)=4 x-3 \text { (RQ for Fri 9/24) } \\
f(x)=3 x^{3}+2 x-1 & \Longrightarrow f^{\prime}\left(x=9 x^{2}+2\right. \text { (Reading for F) }
\end{aligned}
$$

Verifying a derivative

Graphs of $f(x)=7 x^{e}-\frac{1}{42 x^{2}}$ and what we hope is in fact $f^{\prime}(x)$:
$7 e x^{e-1}+\frac{1}{21 x^{3}}$

- $f(x)$ never flat
\Longrightarrow Slope $f^{\prime}(x)$ never 0
- $f(x)$ always \uparrow
\Longrightarrow Slope $f^{\prime}(x)>0$
- $f(x)$ steep near $x=0$
\Longrightarrow Slope $f^{\prime}(x)$ large near 0
- $f(x)$ becomes less \& less steep until $x=\sim 0.3$
\Longrightarrow Slope $f^{\prime}(x) \downarrow$ to
minimum at $x=\sim 0.3$.
- $f(x)$ then becomes steeper and steeper
\Longrightarrow Slope $f^{\prime}(x) \uparrow$ again.

Verifying three antiderivatives

Original function: $v(t)=p^{\prime}(t)=3 t^{2}$
Possible antiderivatives:

- $p(t)=t^{3}+27$
- $p(t)=t^{3}$
- $p(t)=t^{3}-43$

- $p^{\prime}(t)=0$ at $t=0 \Longrightarrow$ $p(t)$ is flat at $t=0$
- $p^{\prime}(t)>0$ for all $t \neq 0 \Longrightarrow$ $p(t) \uparrow$ for all $t \neq 0$
- $p^{\prime}(t)$ first \downarrow then $\uparrow \Longrightarrow$ $p(t)$ is getting flatter than steeper (since $p^{\prime}(t)>0$)

In Class Work

1. Find the derivatives of the following functions. If you have a graphing calculator, verify your answers by graphing f and f^{\prime} on the same set of axes.
(a) $f(x)=x^{2}-4 x^{1 / 2}+7$
(b) $f(x)=x^{3}-\frac{5}{x^{2}}+2$
(c) $f(x)=2 x^{\pi}+x^{-42}-17 x$
(d) $f(x)=\frac{7}{x}-x+4$
2. Find an antiderivative for each function in 1.

Solutions

1. Find the derivatives of the following functions.
(a) $f(x)=x^{2}-4 x^{1 / 2}+7$
$\Longrightarrow f^{\prime}(x)=2 x-2 x^{-1 / 2}$

$$
\begin{aligned}
& \text { (b) } f(x)=x^{3}-\frac{5}{x^{2}}+2 \\
& \Longrightarrow f^{\prime}(x)=3 x^{2}+10 x^{-3}
\end{aligned}
$$

Solutions

1. Find the derivatives of the following functions.

$$
\begin{aligned}
& \text { (c) } f(x)=2 x^{\pi}+x^{-42}-17 x \Longrightarrow \\
& f^{\prime}(x)=2 \pi x^{\pi-1}-42 x^{-43}-17
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=\frac{7}{x}-x+4 \\
& \Longrightarrow f^{\prime}(x)=-7 x^{-2}-1
\end{aligned}
$$

Solutions

2. Find an antiderivative for each function in 1.
(a) $f(x)=x^{2}-4 x^{1 / 2}+7 \Longrightarrow F(x)=x^{3} / 3-4\left(\frac{2}{3}\right) x^{3 / 2}+7 x$
(b) $f(x)=x^{3}-\frac{5}{x^{2}}+2 \Longrightarrow F(x)=x^{4} / 4+5 / x+2 x$
(c) $f(x)=2 x^{\pi}+x^{-42}-17 x \Longrightarrow$
$F(x)=2 x^{\pi+1} /(\pi+1)-x^{-41} / 41-17 x^{2} / 2$
(d) $f(x)=\frac{7}{x}-x+4 \Longrightarrow F(x)=$ uh oh!

When we try to follow our usual rule, it doesn't work!
Does that mean that there is no function that antidifferentiates to $1 / x$?

Not necessarily - we've only looked at a very small collection of functions so far! But it does mean that no power function differentiates to be $1 / x$!

