Types of Functions We Can't Yet Differentiate

- $f(x)=\left(x^{6}-14 x^{5}+27 x^{-3}-13\right)\left(101 x^{-1}+14 x^{6}+13-42 \sqrt{x}\right)$
- $g(x)=\frac{x^{7}-\sqrt{x}}{14 x^{2}+12}$
- $h(x)=\left(x^{2}+13 x-\frac{2}{x}\right)^{1 / 3}$
- $j(x)=\cos \left(x^{2}\right)$
- $k(x)=\sin \left(e^{14 x}\right)$
- $m(x)=\ln (\sqrt{x}-14)$

Consider $f(x)=\left(x^{3}-x^{2}\right)\left(x^{3}+x^{2}\right)$. Is $f^{\prime}(x)=\left(3 x^{2}-2 x\right)\left(3 x^{2}+2 x\right)$?
Below the two are displayed: $f(x)$ is black and the product of the two derivatives is red.

On [-1.2, -0.9] (ish), $f(x)$ is decreasing but the red function is positive.

On $[-0.6,-.4]$ or so, $f(x)$ is increasing but the red function is negative.

On $[0.62,0.8], f(x)$ is decreasing but the red function is positive.
The red function is not the derivative of $f(x)$

$$
\begin{aligned}
\frac{d}{d x} & (f(x) g(x)) \\
& =\lim _{h \rightarrow 0} \frac{f(x+h) g(x+h)-f(x) g(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(x+h) g(x+h)-f(x) g(x+h)+f(x) g(x+h)-f(x) g(x)}{h} \\
& =\lim _{h \rightarrow 0}\left(\frac{f(x+h) g(x+h)-f(x) g(x+h)}{h}+\frac{f(x) g(x+h)-f(x) g(}{h}\right. \\
& =\lim _{h \rightarrow 0}\left(\left[\frac{f(x+h)-f(x)}{h}\right] g(x+h)+f(x)\left[\frac{g(x+h)-g(x)}{h}\right]\right) \\
& =f^{\prime}(x) g(x)+f(x) g^{\prime}(x)
\end{aligned}
$$

Consider $f(x)=\frac{\left(x^{3}-x^{2}\right)}{\left(x^{3}+x^{2}\right)}$.
Is $f^{\prime}(x)=\frac{\left(3 x^{2}-2 x\right)}{\left(3 x^{2}+2 x\right)} ?$
Below the two are displayed: $f(x)$ is black and the quotient of the two derivatives is red.

$f(x)$ is always increasing, but the red function is negative for some x

On $[-1, \infty), f(x)$ is increasing more and more slowly, but the red function is increasing.
The red function is not the derivative of $f(x)$

