For Reading Question \#1 from Monday:

$$
\frac{x^{2}-4}{x-2}, \frac{x^{2}-5}{x-2}
$$

For Reading Question \#1 from Monday:

Zooming out:

$$
\frac{x^{2}-4}{x-2}, \frac{x^{2}-5}{x-2}
$$

For Reading Question \#1 from Monday:

Zooming back in:

$$
\frac{x^{2}-4}{x-2}, \frac{x^{2}-5}{x-2}
$$

For RQ \# 2 from Monday: Example 1.2.2, from text

Evaluate $\lim _{x \rightarrow-3} \frac{3 x+9}{x^{2}-9}$.

$$
\begin{aligned}
\lim _{x \rightarrow-3^{-}} \frac{3 x+9}{x^{2}-9} & =\lim _{x \rightarrow-3^{-}} \frac{3(x+3)}{(x+3)(x-3)} \quad \text { Cancel factors of }(x+3) \\
& =\lim _{x \rightarrow-3^{-}} \frac{3}{x-3}=-\frac{1}{2}
\end{aligned}
$$

For RQ \# 2 from Monday: Example 1.2.2, from text

Evaluate $\lim _{x \rightarrow-3} \frac{3 x+9}{x^{2}-9}$.

$$
\begin{aligned}
\lim _{x \rightarrow-3^{-}} \frac{3 x+9}{x^{2}-9} & =\lim _{x \rightarrow-3^{-}} \frac{3(x+3)}{(x+3)(x-3)} \quad \text { Cancel factors of }(x+3) \\
& =\lim _{x \rightarrow-3^{-}} \frac{3}{x-3}=-\frac{1}{2}
\end{aligned}
$$

In the limit, the cancellation is legal, because x is never equal to -3 .

For RQ \# 2 from Monday: Example 1.2.2, from text

Evaluate $\lim _{x \rightarrow-3} \frac{3 x+9}{x^{2}-9}$.

$$
\begin{aligned}
\lim _{x \rightarrow-3^{-}} \frac{3 x+9}{x^{2}-9} & =\lim _{x \rightarrow-3^{-}} \frac{3(x+3)}{(x+3)(x-3)} \quad \text { Cancel factors of }(x+3) \\
& =\lim _{x \rightarrow-3^{-}} \frac{3}{x-3}=-\frac{1}{2}
\end{aligned}
$$

In the limit, the cancellation is legal, because x is never equal to -3 .
However, it is not correct to write

$$
\frac{3(x+3)}{(x+3)(x-3)}=\frac{3}{x-3}
$$

without some sort of note like when $x \neq-3$

In Class Work

Consider the function $f(x)$ defined by the graph below. Find the following:

1. $f(4)$

2. $\lim _{x \rightarrow 4^{+}} f(x)$ and $\lim _{x \rightarrow 4^{-}} f(x)$
3. $\lim _{x \rightarrow 4} f(x)$
4. Is f continuous at $x=4$?
5. $f(-2)$
6. $\lim _{x \rightarrow-2^{+}} f(x)$ and $\lim _{x \rightarrow-2^{-}} f(x)$
7. $\lim _{x \rightarrow-2} f(x)$
8. Is f continuous at $x=2$?
9. $f(-6)$
10. $\lim _{x \rightarrow-6^{+}} f(x)$ and $\lim _{x \rightarrow-6^{-}} f(x)$
11. $\lim _{x \rightarrow-6} f(x)$

Solutions to In Class Work

Consider the function $f(x)$ defined by the graph below. Find the following:

1. $f(4)=y$-value of solid circle $=2$:
2. $\lim _{x \rightarrow 4^{+}} f(x)=6, \lim _{x \rightarrow 4^{-}} f(x)=6$.

Remember: for limits, we do not pay any attention to what happens at $x=4$.
3. $\lim _{x \rightarrow 4} f(x)=6$, since both the leftand right-limits were 6.

Notice: $\lim _{x \rightarrow 4} f(x) \neq f(4)$.
4. Can see f is not continuous at $x=4$.

Solutions to In Class Work

Consider the function $f(x)$ defined by the graph below. Find the following: 5. $f(-2)=y$-value of closed circle $=$
 2
6. $\lim _{x \rightarrow-2^{+}} f(x)=2$,
$\lim _{x \rightarrow-2^{-}} f(x)=-1$
7. $\lim _{x \rightarrow-2} f(x)$ d.n.e. (does not exist), because the left- and right- sided limits differ.

Notice: As with $x=4$, $\lim _{x \rightarrow-2} f(x) \neq f(-2)$
8. Can see f isn't continuous at $x=-2$.

Solutions to In Class Work

Consider the function $f(x)$ defined by the graph below. Find the following:

9. $f(-6)=-4$
10. $\lim _{x \rightarrow-6^{+}} f(x)=-4$,

$$
\lim _{x \rightarrow-6^{-}} f(x)=-4
$$

11. $\lim _{x \rightarrow-6} f(x)=-4$

Notice: $\lim _{x \rightarrow-6} f(x)=f(-6)$
12. Can see f is continuous at $x=6$

ESTIMATE $\lim _{x \rightarrow 0} \frac{1-\cos (x)}{x}$ by creating a table of values of $f(x)$:

From the left of $x=0$:

x	$\frac{1-\cos (x)}{x}$
-0.1	-0.049958
-0.01	-0.005000
-0.001	-0.000500
-0.0001	-0.000050
-0.00001	-0.000005

From the right of $x=0$:

x	$\frac{1-\cos (x)}{x}$
0.1	0.049958
0.01	0.005000
0.001	0.000500
0.0001	0.000050
0.00001	0.000005

