Solutions to In Class Work

Consider the function f(x) defined by the graph below. Find the following: 1. f(4) = y-value of solid circle = 2:

2. $\lim_{x \to 4^+} f(x) = 6$, $\lim_{x \to 4^-} f(x) = 6$.

Remember: for limits, we do not pay any attention to what happens **at** x = 4.

3. $\lim_{x \to 4} f(x) = 6$, since both the leftand right-limits were 6.

Notice: $\lim_{x\to 4} f(x) \neq f(4)$.

4. Can see f is not continuous at x = 4.

Solutions to In Class Work

Consider the function f(x) defined by the graph below. Find the following: 5. f(-2) = y-value of closed circle =

5.
$$\lim_{x \to -2^+} f(x) = 2,$$

 $\lim_{x \to -2^-} f(x) = -1$

 $\lim_{x \to -2} f(x) \text{ d.n.e. (does not exist),}$ because the left- and right- sided limits differ.

Notice: As with x = 4, $\lim_{x \to -2} f(x) \neq f(-2)$

8. Can see f isn't continuous at x = -2.

Solutions to In Class Work

Consider the function f(x) defined by the graph below. Find the following:

9. f(-6) = -410. $\lim_{x \to -6^+} f(x) = -4$, $\lim_{x \to -6^-} f(x) = -4$ 11. $\lim_{x \to -6} f(x) = -4$ **Notice:** $\lim_{x \to -6} f(x) = f(-6)$

12. Can see f is continuous at x = 6

Math 101-Calculus 1 (Sklensky)

In-Class Work

September 15, 2011 4 / 17

Reading Question # 5 From Wednesday

Math 101-Calculus 1 (Sklensky)

In-Class Work

September 15, 2011 5 / 17

Let a and c be any constants, and suppose that $\lim_{x\to a} f(x)$ and $\lim_{x\to a} g(x)$ both exist. Then:

Let a and c be any constants, and suppose that $\lim_{x\to a} f(x)$ and $\lim_{x\to a} g(x)$ both exist. Then:

$$\lim_{x\to a} c = c$$

Let a and c be any constants, and suppose that $\lim_{x\to a} f(x)$ and $\lim_{x\to a} g(x)$ both exist. Then:

 $\lim_{x \to a} c = c$ $\lim_{x \to a} x = a$

Let a and c be any constants, and suppose that $\lim_{x\to a} f(x)$ and $\lim_{x\to a} g(x)$ both exist. Then:

- $\lim_{x\to a} c = c$
- $\lim_{x \to a} x = a$
- $\lim_{x \to a} (cf(x)) = c \lim_{x \to a} f(x)$

Let a and c be any constants, and suppose that $\lim_{x\to a} f(x)$ and $\lim_{x\to a} g(x)$ both exist. Then:

- $\lim_{x\to a} c = c$
- $\lim_{x \to a} x = a$
- $\lim_{x \to a} (cf(x)) = c \lim_{x \to a} f(x)$
- $\lim_{x \to a} \left(f(x) \pm g(x) \right) = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x)$

Let a and c be any constants, and suppose that $\lim_{x\to a} f(x)$ and $\lim_{x\to a} g(x)$ both exist. Then:

- $\lim_{x\to a} c = c$
- $\lim_{x \to a} x = a$
- $\lim_{x \to a} (cf(x)) = c \lim_{x \to a} f(x)$
- $\lim_{x \to a} \left(f(x) \pm g(x) \right) = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x)$
- $\lim_{x \to a} f(x)g(x) = \left(\lim_{x \to a} f(x)\right) \left(\lim_{x \to a} g(x)\right)$

Let a and c be any constants, and suppose that $\lim_{x\to a} f(x)$ and $\lim_{x\to a} g(x)$ both exist. Then:

$$\lim_{x \to a} c = c$$

 $\lim_{x \to a} x = a$

$$\lim_{x \to a} (cf(x)) = c \lim_{x \to a} f(x)$$

$$\lim_{x \to a} \left(f(x) \pm g(x) \right) = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x)$$

$$\lim_{x \to a} f(x)g(x) = \left(\lim_{x \to a} f(x)\right) \left(\lim_{x \to a} g(x)\right)$$

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}, \text{ if } \lim_{x \to a} g(x) \neq 0$$

Math 101-Calculus 1 (Sklensky)

- 3

(日) (周) (三) (三)

Let a and c be any constants, and suppose that $\lim_{x\to a} f(x)$ and $\lim_{x\to a} g(x)$ both exist. Then:

 $\lim_{x \to a} c = c$ $\lim_{x \to a} x = a$

$$\lim_{x \to a} (cf(x)) = c \lim_{x \to a} f(x)$$

 $\lim_{x \to a} \left(f(x) \pm g(x) \right) = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x)$

$$\lim_{x \to a} f(x)g(x) = \left(\lim_{x \to a} f(x)\right) \left(\lim_{x \to a} g(x)\right)$$

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}, \text{ if } \lim_{x \to a} g(x) \neq 0$$

$$\lim_{x\to a} p(x) = p(a),$$

Math 101-Calculus 1 (Sklensky)

Let a and c be any constants, and suppose that $\lim_{x\to a} f(x)$ and $\lim_{x\to a} g(x)$ both exist. Then:

 $\lim_{x \to a} c = c$ \blacktriangleright lim x = a $x \rightarrow a$ $\lim (cf(x)) = c \lim f(x)$ $\lim_{x \to \infty} (f(x) \pm g(x)) = \lim_{x \to \infty} f(x) \pm \lim_{x \to \infty} g(x)$ $\lim_{x \to a} f(x)g(x) = \left(\lim_{x \to a} f(x)\right) \left(\lim_{x \to a} g(x)\right)$ $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}, \text{ if } \lim_{x \to a} g(x) \neq 0$ $\lim_{x\to a} p(x) = p(a),$ $\lim_{x \to a} \left(f(x) \right)^{1/n} = \left(\lim_{x \to a} f(x) \right)^{1/n}, \text{ as long as the root makes sense.}$ E ► E - 990

Math 101-Calculus 1 (Sklensky)

In-Class Work

September 15, 2011 6 / 17

Limits you will find helpful:

For any real number *a*, we have:

- (i) $\lim_{x\to a} \sin(x) = \sin(a)$
- (ii) $\lim_{x\to a} \cos(x) = \cos(a)$
- (iii) $\lim_{x\to a} e^x = e^a$

(iv)
$$\lim_{x\to a} \ln(x) = \ln(a)$$
, for $a > 0$

(v) If p(x) is a polynomial, then $\lim_{x \to a} f(p(x)) = \lim_{x \to p(a)} f(x)$.

(vi)
$$\lim_{x \to 0} \frac{\sin(x)}{x} = 0$$

Math 101-Calculus 1 (Sklensky)

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

Recall:

Definition: A function f(x) is **continuous** at x = a if

- $\lim_{x \to a} f(x)$ exists
- f(a) is defined
- $\lim_{x \to a} f(x) = f(a)$

More concisely: A function f(x) is **continuous** at x = a if $\lim_{x \to a} f(x) = f(a)$.

Math 101-Calculus 1 (Sklensky)

In-Class Work

September 15, 2011 8 / 17

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Graph of function for Example:

Math 101-Calculus 1 (Sklensky)

In Class Work

1.
$$\lim_{x \to 0} (x^2 - 3x + 1)$$

2.
$$\lim_{x \to 2} \frac{x^2 - x - 2}{x^2 - 4}$$

3.
$$\lim_{h \to 0} \frac{(2+h)^2 - 4}{h}$$

4.
$$\lim_{x \to -1} f(x), \text{ where } f(x) = \begin{cases} 2x+1 & \text{if } x < -1 \\ 3 & \text{if } -1 < x < 1 \\ 2x+1 & \text{if } x > 1 \end{cases}$$

If
$$\lim_{x \to a} f(x) = 2$$
,
 $\lim_{x \to a} g(x) = -3$,
& $\lim_{x \to a} h(x) = 0$,
determine the limits:
(a) $\lim_{x \to a} [2f(x) - 3g(x)]$
(b) $\lim_{x \to a} [3f(x)g(x)]$
(c) $\lim_{x \to a} \left\{ \frac{f(x) + g(x)}{h(x)} \right\}$
(d) $\lim_{x \to a} \left\{ \frac{3f(x) + 2g(x)}{h(x)} \right\}$

Math 101-Calculus 1 (Sklensky)

In-Class Work

5.

September 15, 2011 10 / 17

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

1.
$$\lim_{x \to 0} (x^2 - 3x + 1)$$

Because $x^2 - 3x + 1$ is a polynomial, we know that
 $\lim_{x \to a} p(x) = p(a)$ (Find limit of poly at a by plugging in a)

or in this case,

0

$$\lim_{x \to 0} (x^2 - 3x + 1) = 0^2 - 3 \cdot 0 + 1 = 1.$$

Math 101-Calculus 1 (Sklensky)

In-Class Work

September 15, 2011 11 / 17

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 三 - のへで

2.
$$\lim_{x \to 2} \frac{x^2 - x - 2}{x^2 - 4}$$

Know:
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{f(a)}{g(a)}, \text{ if } \lim_{x \to a} g(x) \neq 0.$$

But:
$$\lim_{x \to 2} (x^2 - 4) \text{ is } 0, \text{ so can't use that rule}$$

Factor!

$$\lim_{x \to 2} \frac{x^2 - x - 2}{x^2 - 4} = \lim_{x \to 2} \frac{(x - 2)(x + 1)}{(x - 2)(x + 2)}$$

As x approaches 2, we're not ever letting x be 2, so x - 2 won't be 0, and so we can cancel the common factor.

$$\lim_{x \to 2} \frac{x^2 - x - 2}{x^2 - 4} = \lim_{x \to 2} \frac{(x - 2)(x + 1)}{(x - 2)(x + 2)} = \lim_{x \to 2} \frac{x + 1}{x + 2} = \frac{\lim_{x \to 2} (x + 1)}{\lim_{x \to 2} (x + 2)} = \frac{3}{4}$$
Math 101-Calculus 1 (Sklensky) In-Class Work

3.
$$\lim_{h \to 0} \frac{(2+h)^2 - 4}{h}$$

Can't use that $\lim_{x\to a} \frac{f(x)}{g(x)} = \frac{f(a)}{g(a)}$, since the denominator approaches 0.

Expand numerator, see if we can come up with anything!

$$\lim_{h \to 0} \frac{(2+h)^2 - 4}{h} = \lim_{h \to 0} \frac{4 + 4h + h^2 - 4}{h} = \lim_{h \to 0} \frac{4h + h^2}{h}.$$

Again, because h is approaching but never reaching 0 (the place where the denominator is 0), we can cancel the common factor of h:

$$\lim_{h \to 0} \frac{(2+h)^2 - 4}{h} = \lim_{h \to 0} (4+h) = 4.$$

Math 101-Calculus 1 (Sklensky)

In-Class Work

September 15, 2011 13 / 17

4.
$$\lim_{x \to -1} f(x)$$
, where $f(x) = \begin{cases} 2x+1 & \text{if } x < -1 \\ 3 & \text{if } -1 < x < 1 \\ 2x+1 & \text{if } x > 1 \end{cases}$

 $\lim_{x \to -1^{-1}} f(x) = \lim_{x \to -1^{-}} 2x + 1 = 2(-1) + 1 = -1, \text{ since } 2x + 1 \text{ is a polynomial.}$

 $\lim_{x \to -1^+} f(x) = \lim_{x \to -1^+} 3 = 3$, because the limit of a constant is that constant.

Since the left- and right-sided limits don't agree, $\lim_{x\to -1} f(x)$ does not exist (even though f(-1) = 3).

Math 101-Calculus 1 (Sklensky)

In-Class Work

September 15, 2011 14 / 17

5. If $\lim_{x\to a} f(x) = 2$, $\lim_{x\to a} g(x) = -3$, & $\lim_{x\to a} h(x) = 0$, determine the limits:

(a)
$$\lim_{x \to a} [2f(x) - 3g(x)] = 2 \lim_{x \to a} f(x) - 3 \lim_{x \to a} g(x) = 2(2) - 3(-3) = 4 + 9 = 13.$$

(b)
$$\lim_{x \to a} [3f(x)g(x)]$$

 $\lim_{x \to a} [3f(x)g(x)] = 3 \lim_{x \to a} f(x) \lim_{x \to a} g(x)$
 $= 3(2)(-3) = -18.$

Math 101-Calculus 1 (Sklensky)

In-Class Work

September 15, 2011 15 / 17

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - のへで

5. (continued) If $\lim_{x \to a} f(x) = 2$, $\lim_{x \to a} g(x) = -3$, & $\lim_{x \to a} h(x) = 0$, determine the limits:

(c)
$$\lim_{x \to a} \left\{ \frac{f(x) + g(x)}{h(x)} \right\}$$

► Numerator: $\lim_{x \to a} (f(x) + g(x)) = \lim_{x \to a} f(x) + \lim_{x \to a} g(x) = 2 - 3 = -1$

• Denominator:
$$\lim_{x \to a} h(x) = 0$$

What happens when the numerator is approaching -1 and the denominator approaches 0?

To get a feel for this, consider what happens when the numerator is fixed at -1 while the denominator approaches 0 from the positive side:

$$\frac{-1}{2} = -0.5 \qquad \frac{-1}{1} = -1 \qquad \frac{-1}{0.1} = -10$$
$$\frac{-1}{0.001} = -100 \qquad \frac{-1}{0.0001} = -10000$$

In general, if the numerator approaches a finite non-zero number while the denominator approaches 0, the limit does not exist.

Math 101-Calculus 1 (Sklensky)

In-Class Work

September 15, 2011 16 / 17

5. (continued) If $\lim_{x \to a} f(x) = 2$, $\lim_{x \to a} g(x) = -3$, & $\lim_{x \to a} h(x) = 0$, determine the limits:

(d)
$$\lim_{x \to a} \left\{ \frac{3f(x) + 2g(x)}{h(x)} \right\}$$

 Numerator: $\lim_{x \to a} (3f(x) + 2g(x)) = 3 \lim_{x \to a} f(x) + 2 \lim_{x \to a} g(x) = 3(2) + (2)(-3) = 0$
 Denominator lim h(x) = 0

In this case, we don't know what happens – this limit is in **indeterminate form**, and evaluating it (at this point) is not possible.