## Solutions to In Class Work

Consider the function $f(x)$ defined by the graph below. Find the following:

1. $f(4)=y$-value of solid circle $=2$ :
2. $\lim _{x \rightarrow 4^{+}} f(x)=6, \lim _{x \rightarrow 4^{-}} f(x)=6$.

Remember: for limits, we do not pay any attention to what happens at $x=4$.
3. $\lim _{x \rightarrow 4} f(x)=6$, since both the leftand right-limits were 6 .

Notice: $\lim _{x \rightarrow 4} f(x) \neq f(4)$.
4. Can see $f$ is not continuous at $x=4$.

## Solutions to In Class Work

Consider the function $f(x)$ defined by the graph below. Find the following: 5. $f(-2)=y$-value of closed circle $=$
 2
6. $\lim _{x \rightarrow-2^{+}} f(x)=2$,
$\lim _{x \rightarrow-2^{-}} f(x)=-1$
7. $\lim _{x \rightarrow-2} f(x)$ d.n.e. (does not exist), because the left- and right- sided limits differ.

Notice: As with $x=4$, $\lim _{x \rightarrow-2} f(x) \neq f(-2)$
8. Can see $f$ isn't continuous at $x=-2$.

## Solutions to In Class Work

Consider the function $f(x)$ defined by the graph below. Find the following:

9. $f(-6)=-4$
10. $\lim _{x \rightarrow-6^{+}} f(x)=-4$,
$\lim _{x \rightarrow-6^{-}} f(x)=-4$
11. $\lim _{x \rightarrow-6} f(x)=-4$

Notice: $\lim _{x \rightarrow-6} f(x)=f(-6)$
12. Can see $f$ is continuous at $x=6$

## Reading Question \# 4 From Wednesday (Example

 1.4.2)Let $g(x)=\left\{\begin{array}{ll}\frac{x^{2}+2 x-3}{x-1} & \text { if } x \neq 1, \\ a & \text { if } x=1\end{array}\right.$ for some real number a.


$$
\begin{aligned}
\lim _{x \rightarrow 1} g(x) & =\lim _{x \rightarrow 1} \frac{x^{2}+2 x-3}{x-1} \\
& =\lim _{x \rightarrow 1} \frac{(x+3)(x-1)}{x-1} \\
& =\lim _{x \rightarrow 1}(x+3)=4
\end{aligned}
$$

Will $g(x)$ be continuous if we define

## Reading Question \# 5 From Wednesday



Figure 1.22b


Figure 1.22d

## Introductory Rules for Limits

Let $a$ and $c$ be any constants, and suppose that $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ both exist. Then:

## Introductory Rules for Limits

Let $a$ and $c$ be any constants, and suppose that $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ both exist. Then:

- $\lim _{x \rightarrow a} c=c$


## Introductory Rules for Limits

Let $a$ and $c$ be any constants, and suppose that $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ both exist. Then:

- $\lim _{x \rightarrow a} c=c$
- $\lim _{x \rightarrow a} x=a$


## Introductory Rules for Limits

Let $a$ and $c$ be any constants, and suppose that $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ both exist. Then:

- $\lim _{x \rightarrow a} c=c$
- $\lim _{x \rightarrow a} x=a$
- $\lim _{x \rightarrow a}(c f(x))=c \lim _{x \rightarrow a} f(x)$


## Introductory Rules for Limits

Let $a$ and $c$ be any constants, and suppose that $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ both exist. Then:

- $\lim _{x \rightarrow a} c=c$
- $\lim _{x \rightarrow a} x=a$
- $\lim _{x \rightarrow a}(c f(x))=c \lim _{x \rightarrow a} f(x)$
- $\lim _{x \rightarrow a}(f(x) \pm g(x))=\lim _{x \rightarrow a} f(x) \pm \lim _{x \rightarrow a} g(x)$


## Introductory Rules for Limits

Let $a$ and $c$ be any constants, and suppose that $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ both exist. Then:

- $\lim _{x \rightarrow a} c=c$
- $\lim _{x \rightarrow a} x=a$
- $\lim _{x \rightarrow a}(c f(x))=c \lim _{x \rightarrow a} f(x)$
- $\lim _{x \rightarrow a}(f(x) \pm g(x))=\lim _{x \rightarrow a} f(x) \pm \lim _{x \rightarrow a} g(x)$
- $\lim _{x \rightarrow a} f(x) g(x)=\left(\lim _{x \rightarrow a} f(x)\right)\left(\lim _{x \rightarrow a} g(x)\right)$


## Introductory Rules for Limits

Let $a$ and $c$ be any constants, and suppose that $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ both exist. Then:

- $\lim _{x \rightarrow a} c=c$
- $\lim _{x \rightarrow a} x=a$
- $\lim _{x \rightarrow a}(c f(x))=c \lim _{x \rightarrow a} f(x)$
- $\lim _{x \rightarrow a}(f(x) \pm g(x))=\lim _{x \rightarrow a} f(x) \pm \lim _{x \rightarrow a} g(x)$
- $\lim _{x \rightarrow a} f(x) g(x)=\left(\lim _{x \rightarrow a} f(x)\right)\left(\lim _{x \rightarrow a} g(x)\right)$
- $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}$, if $\lim _{x \rightarrow a} g(x) \neq 0$


## Introductory Rules for Limits

Let $a$ and $c$ be any constants, and suppose that $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ both exist. Then:

- $\lim _{x \rightarrow a} c=c$
- $\lim _{x \rightarrow a} x=a$
- $\lim _{x \rightarrow a}(c f(x))=c \lim _{x \rightarrow a} f(x)$
- $\lim _{x \rightarrow a}(f(x) \pm g(x))=\lim _{x \rightarrow a} f(x) \pm \lim _{x \rightarrow a} g(x)$
- $\lim _{x \rightarrow a} f(x) g(x)=\left(\lim _{x \rightarrow a} f(x)\right)\left(\lim _{x \rightarrow a} g(x)\right)$
- $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}$, if $\lim _{x \rightarrow a} g(x) \neq 0$
- $\lim _{x \rightarrow a} p(x)=p(a)$,


## Introductory Rules for Limits

Let $a$ and $c$ be any constants, and suppose that $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ both exist. Then:

- $\lim _{x \rightarrow a} c=c$
- $\lim _{x \rightarrow a} x=a$
- $\lim _{x \rightarrow a}(c f(x))=c \lim _{x \rightarrow a} f(x)$
- $\lim _{x \rightarrow a}(f(x) \pm g(x))=\lim _{x \rightarrow a} f(x) \pm \lim _{x \rightarrow a} g(x)$
- $\lim _{x \rightarrow a} f(x) g(x)=\left(\lim _{x \rightarrow a} f(x)\right)\left(\lim _{x \rightarrow a} g(x)\right)$
- $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}$, if $\lim _{x \rightarrow a} g(x) \neq 0$
- $\lim _{x \rightarrow a} p(x)=p(a)$,
- $\lim _{x \rightarrow a}(f(x))^{1 / n}=\left(\lim _{x \rightarrow a} f(x)\right)^{1 / n}$, as long as the root makes sense.


## Limits you will find helpful:

For any real number $a$, we have:
(i) $\lim _{x \rightarrow a} \sin (x)=\sin (a)$
(ii) $\lim _{x \rightarrow a} \cos (x)=\cos (a)$
(iii) $\lim _{x \rightarrow a} e^{x}=e^{a}$
(iv) $\lim _{x \rightarrow a} \ln (x)=\ln (a)$, for $a>0$
(v) If $p(x)$ is a polynomial, then $\lim _{x \rightarrow a} f(p(x))=\lim _{x \rightarrow p(a)} f(x)$.
(vi) $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=0$

## Recall:

Definition: A function $f(x)$ is continuous at $x=a$ if

- $\lim _{x \rightarrow a} f(x)$ exists
- $f(a)$ is defined
- $\lim _{x \rightarrow a} f(x)=f(a)$

More concisely:
A function $f(x)$ is continuous at $x=a$ if $\lim _{x \rightarrow a} f(x)=f(a)$.

## Graph of function for Example:



## In Class Work

1. $\lim _{x \rightarrow 0}\left(x^{2}-3 x+1\right)$
2. $\lim _{x \rightarrow 2} \frac{x^{2}-x-2}{x^{2}-4}$
3. $\lim _{h \rightarrow 0} \frac{(2+h)^{2}-4}{h}$
4. $\lim _{x \rightarrow-1} f(x)$, where $f(x)=$

$$
\begin{cases}2 x+1 & \text { if } x<-1 \\ 3 & \text { if }-1<x<1 \\ 2 x+1 & \text { if } x>1\end{cases}
$$

5. If $\lim _{x \rightarrow a} f(x)=2$,
$\lim _{x \rightarrow a} g(x)=-3$,
$\& \lim _{x \rightarrow a} h(x)=0$,
determine the limits:
(a) $\lim _{x \rightarrow a}[2 f(x)-3 g(x)]$
(b) $\lim _{x \rightarrow a}[3 f(x) g(x)]$
(c) $\lim _{x \rightarrow a}\left\{\frac{f(x)+g(x)}{h(x)}\right\}$
(d) $\lim _{x \rightarrow a}\left\{\frac{3 f(x)+2 g(x)}{h(x)}\right\}$

## Solutions:

1. $\lim _{x \rightarrow 0}\left(x^{2}-3 x+1\right)$

Because $x^{2}-3 x+1$ is a polynomial, we know that

$$
\lim _{x \rightarrow a} p(x)=p(a) \text { (Find limit of poly at a by plugging in a) }
$$

or in this case,

$$
\lim _{x \rightarrow 0}\left(x^{2}-3 x+1\right)=0^{2}-3 \cdot 0+1=1
$$

## Solutions:

2. $\lim _{x \rightarrow 2} \frac{x^{2}-x-2}{x^{2}-4}$

Know: $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{f(a)}{g(a)}$, if $\lim _{x \rightarrow a} g(x) \neq 0$.
But: $\lim _{x \rightarrow 2}\left(x^{2}-4\right)$ is 0 , so can't use that rule
Factor!

$$
\lim _{x \rightarrow 2} \frac{x^{2}-x-2}{x^{2}-4}=\lim _{x \rightarrow 2} \frac{(x-2)(x+1)}{(x-2)(x+2)}
$$

As $x$ approaches 2 , we're not ever letting $x$ be 2 , so $x-2$ won't be 0 , and so we can cancel the common factor.

$$
\lim _{x \rightarrow 2} \frac{x^{2}-x-2}{x^{2}-4}=\lim _{x \rightarrow 2} \frac{(x-2)(x+1)}{(x-2)(x+2)}=\lim _{x \rightarrow 2} \frac{x+1}{x+2}=\frac{\lim _{x \rightarrow 2}(x+1)}{\lim _{x \rightarrow 2}(x+2)}=\frac{3}{4}
$$

## Solutions:

3. $\lim _{h \rightarrow 0} \frac{(2+h)^{2}-4}{h}$

Can't use that $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{f(a)}{g(a)}$, since the denominator approaches 0 .
Expand numerator, see if we can come up with anything!

$$
\lim _{h \rightarrow 0} \frac{(2+h)^{2}-4}{h}=\lim _{h \rightarrow 0} \frac{4+4 h+h^{2}-4}{h}=\lim _{h \rightarrow 0} \frac{4 h+h^{2}}{h}
$$

Again, because $h$ is approaching but never reaching 0 (the place where the denominator is 0 ), we can cancel the common factor of $h$ :

$$
\lim _{h \rightarrow 0} \frac{(2+h)^{2}-4}{h}=\lim _{h \rightarrow 0}(4+h)=4
$$

## Solutions:

4. $\lim _{x \rightarrow-1} f(x)$, where $f(x)= \begin{cases}2 x+1 & \text { if } x<-1 \\ 3 & \text { if }-1<x<1 \\ 2 x+1 & \text { if } x>1\end{cases}$
$\lim _{x \rightarrow-1^{-1}} f(x)=\lim _{x \rightarrow-1^{-}} 2 x+1=2(-1)+1=-1$, since $2 x+1$ is a polynomial.
$\lim _{x \rightarrow-1^{+}} f(x)=\lim _{x \rightarrow-1^{+}} 3=3$, because the limit of a constant is that constant.

Since the left- and right-sided limits don't agree, $\lim _{x \rightarrow-1} f(x)$ does not exist (even though $f(-1)=3$ ).

## Solutions:

5. If $\lim _{x \rightarrow a} f(x)=2, \lim _{x \rightarrow a} g(x)=-3, \& \lim _{x \rightarrow a} h(x)=0$, determine the limits:
(a) $\lim _{x \rightarrow a}[2 f(x)-3 g(x)]$

$$
\begin{aligned}
\lim _{x \rightarrow a}[2 f(x)-3 g(x)] & =2 \lim _{x \rightarrow a} f(x)-3 \lim _{x \rightarrow a} g(x) \\
& =2(2)-3(-3)=4+9=13
\end{aligned}
$$

(b) $\lim _{x \rightarrow a}[3 f(x) g(x)]$

$$
\begin{aligned}
\lim _{x \rightarrow a}[3 f(x) g(x)] & =3 \lim _{x \rightarrow a} f(x) \lim _{x \rightarrow a} g(x) \\
& =3(2)(-3)=-18 .
\end{aligned}
$$

5. (continued) If $\lim _{x \rightarrow a} f(x)=2, \lim _{x \rightarrow a} g(x)=-3, \& \lim _{x \rightarrow a} h(x)=0$, determine the limits:
(c) $\lim _{x \rightarrow a}\left\{\frac{f(x)+g(x)}{h(x)}\right\}$

- Numerator: $\lim _{x \rightarrow a}(f(x)+g(x))=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)=2-3=-1$
- Denominator: $\lim _{x \rightarrow a} h(x)=0$

What happens when the numerator is approaching -1 and the denominator approaches 0 ?
To get a feel for this, consider what happens when the numerator is fixed at -1 while the denominator approaches 0 from the positive side:

$$
\begin{array}{rlr}
\frac{-1}{2} & =-0.5 & \frac{-1}{1}=-1 \\
\frac{-1}{0.01} & =-100 & \frac{-1}{0.001}=-1000
\end{array} \frac{\frac{-1}{0.1}=-10}{0.0001}=-10000
$$

In general, if the numerator approaches a finite non-zero number while the denominator approaches 0 , the limit does not exist.
5. (continued) If $\lim _{x \rightarrow a} f(x)=2, \lim _{x \rightarrow a} g(x)=-3, \& \lim _{x \rightarrow a} h(x)=0$, determine the limits:
(d) $\lim _{x \rightarrow a}\left\{\frac{3 f(x)+2 g(x)}{h(x)}\right\}$

- Numerator:
$\lim _{x \rightarrow a}(3 f(x)+2 g(x))=3 \lim _{x \rightarrow a} f(x)+2 \lim _{x \rightarrow a} g(x)=3(2)+(2)(-3)=0$
- Denominator $\lim _{x \rightarrow a} h(x)=0$

In this case, we don't know what happens - this limit is in indeterminate form, and evaluating it (at this point) is not possible.

