5. (continued) If $\lim _{x \rightarrow a} f(x)=2, \lim _{x \rightarrow a} g(x)=-3, \& \lim _{x \rightarrow a} h(x)=0$, determine the limits:
(d) $\lim _{x \rightarrow a}\left\{\frac{3 f(x)+2 g(x)}{h(x)}\right\}$

- Numerator: $\lim _{x \rightarrow a}(3 f(x)+2 g(x))=3 \lim _{x \rightarrow a} f(x)+2 \lim _{x \rightarrow a} g(x)=3(2)+(2)(-3)=0$
- Denominator $\lim _{x \rightarrow a} h(x)=0$

In indeterminate form
5. (continued) If $\lim _{x \rightarrow a} f(x)=2, \lim _{x \rightarrow a} g(x)=-3$, \& $\lim _{x \rightarrow a} h(x)=0$, determine the limits:
(d) $\lim _{x \rightarrow a}\left\{\frac{3 f(x)+2 g(x)}{h(x)}\right\}$

- Numerator:

$$
\lim _{x \rightarrow a}(3 f(x)+2 g(x))=3 \lim _{x \rightarrow a} f(x)+2 \lim _{x \rightarrow a} g(x)=3(2)+(2)(-3)=0
$$

- Denominator $\lim _{x \rightarrow a} h(x)=0$

In indeterminate form
With this information, we can not determine whether this limit exists, and if it does, what it converges to.

Graph of $y=\frac{1-\cos (x)}{x}$

Graph of $y=\frac{\sin (x)}{x}$

Illustrating the IVT:

Illustrating the IVT:

Illustrating the IVT:

The IVT and the Bisection Method:

Find a zero of $f(x)=\cos (x)-x$:

Interval $[a, b]$	$f(a)$	$f(b)$	mid point	f (midpoint)	Which $\frac{1}{2}-$ interval?
$[0,1]$	>0	<0	0.5	$0.378>0$	$[0.5,1]$

The IVT and the Bisection Method:

Find a zero of $f(x)=\cos (x)-x$:

Interval $[a, b]$	$f(a)$	$f(b)$	mid point	f (midpoint)	Which $\frac{1}{2}-$ interval?
$[0,1]$	>0	<0	0.5	$0.378>0$	$[0.5,1]$
$[0.5,1]$	>0	<0	0.75	$-0.018<0$	

The IVT and the Bisection Method:

Find a zero of $f(x)=\cos (x)-x$:

Interval $[a, b]$	$f(a)$	$f(b)$	mid point	f (midpoint)	Which $\frac{1}{2}-$ interval?
$[0,1]$	>0	<0	0.5	$0.378>0$	$[0.5,1]$

$$
\begin{array}{|l|l|l|l|l|l}
\hline[0.5,1] & >0 & <0 & 0.75 & -0.018<0 & {[0.5,0.75]} \\
\hline
\end{array}
$$

The IVT and the Bisection Method:

Find a zero of $f(x)=\cos (x)-x$:

Interval $[a, b]$	$f(a)$	$f(b)$	mid point	f (midpoint)	Which $\frac{1}{2}-$ interval?
$[0,1]$	>0	<0	0.5	$0.378>0$	$[0.5,1]$

$[0.5,1]$	>0	<0	0.75	$-0.018<0$	$[0.5,0.75]$
$[0.5,0.75]$	>0	<0	0.625	$0.186>0$	

The IVT and the Bisection Method:

Find a zero of $f(x)=\cos (x)-x$:

Interval $[a, b]$	$f(a)$	$f(b)$	mid point	f (midpoint)	Which $\frac{1}{2}-$ interval?
$[0,1]$	>0	<0	0.5	$0.378>0$	$[0.5,1]$

$$
\begin{array}{|c|c|c|c|c|c}
\hline[0.5,1] & >0 & <0 & 0.75 & -0.018<0 & {[0.5,0.75]} \\
\hline[0.5,0.75] & >0 & <0 & 0.625 & 0.186>0 & {[0.625,0.75]} \\
\hline
\end{array}
$$

The IVT and the Bisection Method:

Find a zero of $f(x)=\cos (x)-x$:

Interval $[a, b]$	$f(a)$	$f(b)$	mid point	f (midpoint)	Which $\frac{1}{2}-$ interval?
$[0,1]$	>0	<0	0.5	$0.378>0$	$[0.5,1]$
$[0.5,1]$	>0	<0	0.75	$-0.018<0$	$[0.5,0.75]$
$[0.5,0.75]$	>0	<0	0.625	$0.186>0$	$[0.625,0.75]$
$[0.625,0.75]$	>0	<0	0.6875	$0.085>0$	

The IVT and the Bisection Method:

Find a zero of $f(x)=\cos (x)-x$:

Interval $[a, b]$	$f(a)$	$f(b)$	mid point	f (midpoint)	Which $\frac{1}{2}$ - interval?
$[0,1]$	>0	<0	0.5	$0.378>0$	$[0.5,1]$

\[

\]

The IVT and the Bisection Method:

Find a zero of $f(x)=\cos (x)-x$:

Interval $[a, b]$	$f(a)$	$f(b)$	mid point	f (midpoint)	Which $\frac{1}{2}-$ interval?
$[0,1]$	>0	<0	0.5	$0.378>0$	$[0.5,1]$

[0.5, 1]	>0	<0	0.75	$-0.018<0$	[0.5, 0.75]
[0.5, 0.75]	>0	<0	0.625	$0.186>0$	[0.625, 0.75]
[0.625, 0.75]	>0	<0	0.6875	$0.085>0$	[0.6875, 0.75]
[0.6875, 0.75]	>0	<0	0.71875	$0.034>0$	[0.71875, 0.75]
[0.71875, 0.75]	>0	<0	0.734375	$0.008>0$	[0.734375, 0.75]
[0.734375, 0.75]	>0	<0	0.7421875	$-0.005>0$	[0.734375, 0.742
Math 101-Calculus 1 (Sklensky) In-Class Work September 16, 2010 $6 / 10$					

In Class Work

1. Let $f(x)=14 \sin (3 x)+2 x^{2}-4 x^{3}$. Use the IVT to show that $f(x)$ has a root between $x=-2$ and $x=2$.
2. (a) Let $f(x)=\frac{1}{x-2}$. Use the IVT to show that $f(x)$ has a root between $x=1$ and $x=3$.
(b) Find the exact value of the root by solving $f(x)=0$. What goes wrong?
(c) Reconcile your answers to parts (a) and (b).

Solutions:

1. Let $f(x)=14 \sin (3 x)+2 x^{2}-4 x^{3}$. Use the IVT to show that $f(x)$ has a root between $x=-2$ and $x=2$.

$$
\begin{aligned}
f(-2) & =14 \sin (-6)+8-4(-8)=14 \sin (-6)+8+32>0 \\
f(2) & =14 \sin (6)+8-32<0
\end{aligned}
$$

Because f is continuous on $[-2,2]$ and because 0 is between $f(-2)$ and $f(2)$, there must be some $c \in[-2,2]$ such that $f(c)=0$. Therefore f has a root between $x=-2$ and $x=2$.

Solutions:

2. Let $f(x)=\frac{1}{x-2}$.
(a) Use the IVT to show that $f(x)$ has a root between $x=1$ and $x=3$.

$$
f(1)=-1 \quad f(3)=1
$$

Since $f(1)<0$ and $f(3)>0$, it seems that f has a root between $x=1$ and $x=3$.
(b) Find the exact value of the root by solving $f(x)=0$. What goes wrong?

$$
\frac{1}{x-2}=0 \Longrightarrow(x-2)\left(\frac{1}{x-2}\right)=(x-2)(0) \Longrightarrow 1=0!!
$$

Nonsensical conclusion \Longrightarrow Original set-up must have made no sense \Longrightarrow there is no root!
2. (continued)
(c) Reconcile your answers to parts (a) and (b).

How can there not be a root - we used the IVT to show a root must exist!!

But did we? Did we ever check to see whether the hypotheses of the theorem apply?

Is $f(x)$ continuous on $[1,3]$?
No $-f(x)=\frac{1}{x-2}$ is not defined at $x=2$.

