5. (continued) If $\lim_{x\to a} f(x) = 2$, $\lim_{x\to a} g(x) = -3$, & $\lim_{x\to a} h(x) = 0$, determine the limits:

(d)
$$\lim_{x \to a} \left\{ \frac{3f(x) + 2g(x)}{h(x)} \right\}$$

Numerator:
$$\lim_{x \to a} (3f(x) + 2g(x)) = 3 \lim_{x \to a} f(x) + 2 \lim_{x \to a} g(x) = 3(2) + (2)(-3) = 0$$
Denominator
$$\lim_{x \to a} h(x) = 0$$

In indeterminate form

Math 101-Calculus 1 (Sklensky)

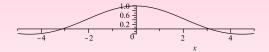
In-Class Work

September 16, 2010 1 / 10

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 三臣 - のへで

5. (continued) If $\lim_{x \to a} f(x) = 2$, $\lim_{x \to a} g(x) = -3$, & $\lim_{x \to a} h(x) = 0$, determine the limits:

(d)
$$\lim_{x \to a} \left\{ \frac{3f(x) + 2g(x)}{h(x)} \right\}$$


Numerator: $\lim_{x \to a} (3f(x) + 2g(x)) = 3 \lim_{x \to a} f(x) + 2 \lim_{x \to a} g(x) = 3(2) + (2)(-3) = 0$ Denominator $\lim_{x \to a} h(x) = 0$

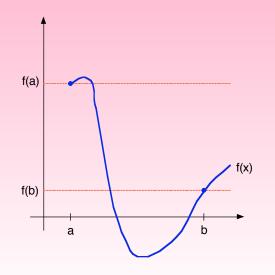
In indeterminate form

With this information, we can not determine whether this limit exists, and if it does, what it converges to.

Graph of
$$y = \frac{\sin(x)}{x}$$

Math 101-Calculus 1 (Sklensky)

In-Class Work


September 16, 2010 2 / 10

- 2

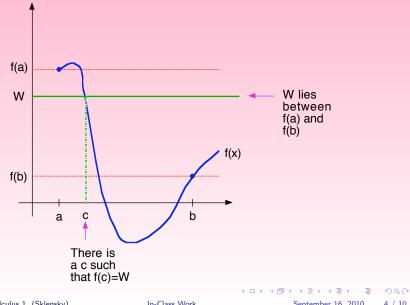
900

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

Illustrating the IVT:

Math 101-Calculus 1 (Sklensky)

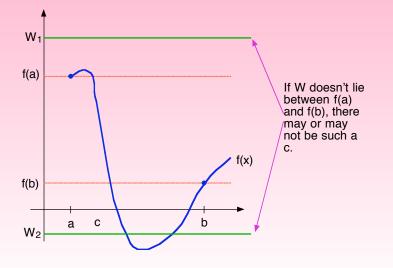
In-Class Work


September 16, 2010 3 / 10

- 34

SAG

・ロト ・ 日 ト ・ 日 ト ・ 日 ト


Illustrating the IVT:

Math 101-Calculus 1 (Sklensky)

4 / 10 September 16, 2010

Illustrating the IVT:

Math 101-Calculus 1 (Sklensky)

In-Class Work

September 16, 2010 5 / 10

э

DQC

(4) E (4) E (4)

- ∢ 🗇 ト

Find a zero of $f(x) = \cos(x) - x$:

Interval	f(a)	<i>f</i> (<i>b</i>)	mid	f(midpoint)	Which $\frac{1}{2}$ -
[<i>a</i> , <i>b</i>]			point		interval?
[0,1]	> 0	< 0	0.5	0.378 > 0	[0.5, 1]

Math 101-Calculus 1 (Sklensky)

In-Class Work

September 16, 2010 6 / 10

Find a zero of $f(x) = \cos(x) - x$:

Interval	f(a)	f(b)	mid	f(midpoint)	Which $\frac{1}{2}$ -
[<i>a</i> , <i>b</i>]			point		interval?
[0,1]	> 0	< 0	0.5	0.378 > 0	[0.5, 1]
[0.5, 1]	> 0	< 0	0.75	-0.018 < 0	

Math 101-Calculus 1 (Sklensky)

In-Class Work

September 16, 2010 6 / 10

Find a zero of $f(x) = \cos(x) - x$:

Interval	<i>f</i> (<i>a</i>)	<i>f</i> (<i>b</i>)	mid	f(midpoint)	Which $\frac{1}{2}$ -
[a, b]			point		interval?
[0,1]	> 0	< 0	0.5	0.378 > 0	[0.5, 1]
[0.5, 1]	> 0	< 0	0.75	-0.018 < 0	[0.5, 0.75]

Math 101-Calculus 1 (Sklensky)

In-Class Work

September 16, 2010 6 / 10

Find a zero of $f(x) = \cos(x) - x$:

Interval	<i>f</i> (<i>a</i>)	f(b)	mid	f(midpoint)	Which $\frac{1}{2}$ -
[<i>a</i> , <i>b</i>]			point		interval?
[0,1]	> 0	< 0	0.5	0.378 > 0	[0.5, 1]
[0.5, 1]	> 0	< 0	0.75	-0.018 < 0	[0.5, 0.75]
[0.5, 0.75]	> 0	< 0	0.625	0.186 > 0	

Math 101-Calculus 1 (Sklensky)

In-Class Work

September 16, 2010 6 / 10

Find a zero of $f(x) = \cos(x) - x$:

Interval	<i>f</i> (<i>a</i>)	f(b)	mid	f(midpoint)	Which $\frac{1}{2}$ -
[a, b]			point		interval?
[0,1]	> 0	< 0	0.5	0.378 > 0	[0.5, 1]
[0.5, 1]	> 0	< 0	0.75	-0.018 < 0	[0.5, 0.75]
[0.5, 0.75]	> 0	< 0	0.625	0.186 > 0	[0.625, 0.75]

Math 101-Calculus 1 (Sklensky)

In-Class Work

September 16, 2010 6 / 10

Find a zero of $f(x) = \cos(x) - x$:

Interval	<i>f</i> (<i>a</i>)	f(b)	mid	f(midpoint)	Which $\frac{1}{2}$ -
[<i>a</i> , <i>b</i>]			point		interval?
[0,1]	> 0	< 0	0.5	0.378 > 0	[0.5, 1]
[0.5, 1]	> 0	< 0	0.75	-0.018 < 0	[0.5, 0.75]
[0.5, 0.75]	> 0	< 0	0.625	0.186 > 0	[0.625, 0.75]
[0.625, 0.75]	> 0	< 0	0.6875	0.085 > 0	

Math 101-Calculus 1 (Sklensky)

In-Class Work

September 16, 2010 6 / 10

Find a zero of $f(x) = \cos(x) - x$:

Interval	f(a)	f(b)	mid	f(midpoint)	Which $\frac{1}{2}$ -
[a, b]			point		interval?
[0,1]	> 0	< 0	0.5	0.378 > 0	[0.5, 1]
[0.5, 1]	> 0	< 0	0.75	-0.018 < 0	[0.5, 0.75]
[0.5, 0.75]	> 0	< 0	0.625	0.186 > 0	[0.625, 0.75]
					·
[0.625, 0.75]	> 0	< 0	0.6875	0.085 > 0	[0.6875, 0.75]

Math 101-Calculus 1 (Sklensky)

In-Class Work

September 16, 2010 6 / 10

<□▶ <□▶ < □▶ < □▶ < □▶ = □ - つへ⊙

Find a zero of $f(x) = \cos(x) - x$:

Interval	<i>f</i> (<i>a</i>)	<i>f</i> (<i>b</i>)	mid	f(midpoint)	Which $\frac{1}{2}$ -
[a, b]			point		interval?
[0,1]	> 0	< 0	0.5	0.378 > 0	[0.5, 1]
[0.5, 1]	> 0	< 0	0.75	-0.018 < 0	[0.5, 0.75]
[0.5, 0.75]	> 0	< 0	0.625	0.186 > 0	[0.625, 0.75]
[0.625, 0.75]	> 0	< 0	0.6875	0.085 > 0	[0.6875, 0.75]
[0.6875, 0.75]	> 0	< 0	0.71875	0.034 > 0	[0.71875, 0.75]
[0.71875, 0.75]	> 0	< 0	0.734375	0.008 > 0	[0.734375, 0.75]
[0.734375, 0.75]	> 0	< 0	0.7421875	-0.005 > 0	[0.734375, 0.742

Math 101-Calculus 1 (Sklensky)

In-Class Work

September 16, 2010 6 / 10

In Class Work

- 1. Let $f(x) = 14\sin(3x) + 2x^2 4x^3$. Use the IVT to show that f(x) has a root between x = -2 and x = 2.
- 2. (a) Let $f(x) = \frac{1}{x-2}$. Use the IVT to show that f(x) has a root between x = 1 and x = 3.
 - (b) Find the exact value of the root by solving f(x) = 0. What goes wrong?
 - (c) Reconcile your answers to parts (a) and (b).

Math 101-Calculus 1 (Sklensky)

In-Class Work

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

September 16, 2010 7 / 10

Solutions:

1. Let $f(x) = 14\sin(3x) + 2x^2 - 4x^3$. Use the IVT to show that f(x) has a root between x = -2 and x = 2.

$$\begin{array}{rcl} f(-2) &=& 14\sin(-6)+8-4(-8)=14\sin(-6)+8+32>0\\ f(2) &=& 14\sin(6)+8-32<0 \end{array}$$

Because f is continuous on [-2, 2] and because 0 is between f(-2) and f(2), there must be some $c \in [-2, 2]$ such that f(c) = 0. Therefore f has a root between x = -2 and x = 2.

Math 101-Calculus 1 (Sklensky)

In-Class Work

September 16, 2010 8 / 10

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろのぐ

Solutions:

2. Let
$$f(x) = \frac{1}{x-2}$$
.

(a) Use the IVT to show that f(x) has a root between x = 1 and x = 3.

$$f(1) = -1$$
 $f(3) = 1$
Since $f(1) < 0$ and $f(3) > 0$, it seems that f has a root between $x = 1$ and $x = 3$.

(b) Find the exact value of the root by solving f(x) = 0. What goes wrong?

$$\frac{1}{x-2} = 0 \Longrightarrow (x-2)\left(\frac{1}{x-2}\right) = (x-2)(0) \Longrightarrow 1 = 0!!$$

2. (continued)

(c) Reconcile your answers to parts (a) and (b).

How can there not be a root – we used the IVT to show a root must exist!!

But did we? Did we ever check to see whether the hypotheses of the theorem apply?

Is f(x) continuous on [1,3]?

No –
$$f(x) = \frac{1}{x-2}$$
 is not defined at $x = 2$.

Math 101-Calculus 1 (Sklensky)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろのぐ