Expanding on Reading Question #1

Why
$$\lim_{x \to -3} \frac{1}{(x+3)^4} = 0$$
:

Dividing a non-zero number by a small number results in a large number - the smaller the divisor, the larger the result!

Graph for Reading Question #2 $f(x) = \frac{(x-1)(x-3)}{(x-6)(x-4)}$

2 / 12

Example: $f(x) = \frac{-x}{\sqrt{4-x^2}}$

Domain: $x \le 2$

$$\lim_{x\to 2} f(x) = \lim_{x\to 2^-} f(x) = -\infty$$

Math 101-Calculus 1 (Sklensky)

In-Class Work

September 19, 2011 3 / 12

Graph of $f(x) = \frac{1}{(x+3)^4}$

In-Class Work

September 19, 2011

4 / 12

Math 101-Calculus 1 (Sklensky)

In Class Work

1. Determine each limit.

(a)
$$\lim_{x\to 2} \frac{x-4}{x^2-4x+4}$$

(b)
$$\lim_{x\to 0} e^{-2/x}$$

(c)
$$\lim_{x \to \infty} \frac{x^3 - 2}{3x^2 + 4x - 1}$$

2. Determine all horizontal and vertical asymptotes of

$$f(x) = \frac{3x^2 + 1}{x^2 - 2x - 3}$$
. For each vertical asymptote, determine whether $f(x) \to \infty$ or $f(x) \to -\infty$ on either side of the asymptote.

Determine each limit.

(a)
$$\lim_{x\to 2} \frac{x-4}{x^2-4x+4}$$

As
$$x \rightarrow 2$$
, $x - 4 \rightarrow -2$

• As
$$x \to 2$$
, $x^2 - 4x + 4 = (x - 2)(x - 2) \to 0$

Thus the limit does not exist, but in what way?

• As
$$x \to 2^-$$
, $f(x) \to \frac{-}{(-)(-)} = -\infty$

• As
$$x \to 2^+$$
, $f(x) \to \frac{1}{(+)(+)} = -\infty$

Thus
$$\lim_{x \to 2} \frac{x - 4}{x^2 - 4x + 4} = -\infty$$
.

- Determine each limit.
 - (b) $\lim_{x \to 0} e^{-2/x}$
 - Rewrite as $\lim_{x\to 0} \frac{1}{e^{2/x}}$.
 - As $x \to 0^-$, $\frac{2}{x} \to -\infty$. As $x \to 0^+$, $\frac{2}{x} \to \infty$. $\lim_{x\to 0}\frac{2}{x} \text{ d.n.e.}$
 - ereally large positive number is really large ereally large negative number is very small

Therefore totally different things are happening to our function, depending on what side we're approaching 0 from.

$$\lim_{x\to 0} \frac{1}{e^{2/x}}$$
 does not exist.

Determine each limit.

(c)
$$\lim_{x \to \infty} \frac{x^3 - 2}{3x^2 + 4x - 1}$$

Rational function.

- Degree of numerator =3
- Degree of denominator = 2
- Degree of numerator > degree of denominator
- Numerator approaches infinity much faster than denominator
- ▶ Coefficient of x^3 in numerator is 1, coefficient of x^2 in denominator is 3 - both are positive.

$$\lim_{x \to \infty} \frac{x^3 - 2}{3x^2 + 4x - 1} = \infty$$

2. Determine all horizontal and vertical asymptotes of

$$f(x)=rac{3x^2+1}{x^2-2x-3}$$
. For each vertical asymptote, determine whether $f(x) o\infty$ or $f(x) o-\infty$ on either side of the asymptote.

Vertical Asymptotes:

$$f(x) = \frac{3x^2 + 1}{x^2 - 2x - 3} = \frac{3x^2 + 1}{(x - 3)(x + 1)}$$

- ▶ Thus vertical asymptotes exist at x = 3 and x = -1.
 - x = 3:
 - As $x \to 3^-$, we have $\frac{+}{(-)(+)} = -$, so $\lim_{x \to 3^-} f(x) = -\infty$
 - As $x \to 3^+$, we have $\frac{+}{(+)(+)} = +$, so $\lim_{x \to 3^+} f(x) = \infty$

2. Determine all horizontal and vertical asymptotes of

$$f(x)=rac{3x^2+1}{x^2-2x-3}$$
. For each vertical asymptote, determine whether $f(x) o\infty$ or $f(x) o-\infty$ on either side of the asymptote.

Vertical Asymptotes, continued

- ▶ Thus vertical asymptotes exist at x = 3 and x = -1.
 - ▶ x = -1:
 - As $x \to -1^-$, we have $\frac{+}{(-)(-)} = +$, so $\lim_{x \to -1^-} f(x) = \infty$
 - As $x \to -1^+$, we have $\frac{+}{(-)(+)} = -$, so $\lim_{x \to -1^+} f(x) = -\infty$

2. Determine all horizontal and vertical asymptotes of

$$f(x) = \frac{3x^2 + 1}{x^2 - 2x - 3}$$
. For each vertical asymptote, determine whether $f(x) \to \infty$ or $f(x) \to -\infty$ on either side of the asymptote.

Horizontal Asymptotes:

- Need to find $\lim_{x \to \infty} f(x)$, $\lim_{x \to \infty} f(x)$.
- ▶ Degree of numerator=2
- ▶ Degree of denominator =2
- Numerator and denominator have the same degree
- Neither dominates over the other
- \blacktriangleright Limit at ∞ will be ratio of leading coefficients
- ▶ Coefficient of x^2 in numerator is 3, coefficient of x^2 in denominator is 1
- $\lim_{x \to \infty} f(x) = \frac{3}{1} = 3$
- ▶ As for $-\infty$, just need to check if anything becomes negative.
- ▶ Because highest degree of both is even, negative aren't introduced, so

$$\lim_{\substack{x \to -\infty \\ \text{Math 101-Calculus 1 (Sklensky)}}} f(x) = \frac{3}{1} = 3$$

$$\lim_{\substack{x \to -\infty \\ \text{Math 101-Calculus 1 (Sklensky)}}} f(x) = \frac{3}{1} = 3$$

$$\lim_{\substack{x \to -\infty \\ \text{In-Class Work}}} f(x) = \frac{3}{1} = 3$$

2. Determine all horizontal and vertical asymptotes of

$$f(x) = \frac{3x^2 + 1}{x^2 - 2x - 3}$$
. For each vertical asymptote, determine whether $f(x) \to \infty$ or $f(x) \to -\infty$ on either side of the asymptote.

Conclusion: f(x) has a

- horizontal asymptote at y=3
- ▶ vertical asymptote at x = -1. $\lim_{x \to -1^-} f(x) = \infty$, $\lim_{x \to -1^+} f(x) = -\infty$.
- ▶ 2nd vertical asymptote at x = 3. $\lim_{x \to 3^-} f(x) = -\infty$, $\lim_{x \to 3^+} f(x) = \infty$.

2. Determine all horizontal and vertical asymptotes of

$$f(x)=rac{3x^2+1}{x^2-2x-3}$$
. For each vertical asymptote, determine whether $f(x) o \infty$ or $f(x) o -\infty$ on either side of the asymptote.

Conclusion: f(x) has a

- horizontal asymptote at y=3
- ▶ vertical asymptote at x = -1. $\lim_{x \to -1^-} f(x) = \infty$, $\lim_{x \to -1^+} f(x) = -\infty$. ▶ 2nd vertical asymptote at x = 3. $\lim_{x \to 3^-} f(x) = -\infty$, $\lim_{x \to 3^+} f(x) = \infty$.

