Expanding on Reading Question \#1

Why $\lim _{x \rightarrow-3} \frac{1}{(x+3)^{4}}=0$:

From the right:

x	$(x+3)^{4}$	$\frac{1}{(x+3)^{4}}$
-2.9	$(0.1)^{4}=10^{-4}$	10^{4}
-2.99	$(0.01)^{4}=10^{-8}$	10^{8}
-2.999	$(0.000)^{4}=10^{-12}$	10^{12}
-2.9999	$(0.0001)^{4}=10^{-16}$	10^{16}

From the left: | -3.1 | $(-0.1)^{4}=10^{-4}$ | 10^{4} |
| :---: | :---: | :---: |
| -3.01 | $(-0.01)^{4}=10^{-8}$ | 10^{8} |
| -3.001 | $(-0.001)^{4}=10^{-12}$ | $10^{1} 2$ |
| -3.0001 | $(-0.0001)^{4}=10^{-16}$ | 10^{16} |

x	$(x+3)^{4}$	$\frac{1}{(x+3)^{4}}$
-3.1	$(-0.1)^{4}=10^{-4}$	10^{4}
-3.01	$(-0.01)^{4}=10^{-8}$	10^{8}
-3.001	$(-0.001)^{4}=10^{-12}$	$10^{12} 2$
-3.0001	$(-0.0001)^{4}=10^{-16}$	10^{16}

Dividing a non-zero number by a small number results in a large number the smaller the divisor, the larger the result!

Graph for Reading Question \#2

$f(x)=\frac{(x-1)(x-3)}{(x-6)(x-4)}$

Example: $f(x)=\frac{-x}{\sqrt{4-x^{2}}}$

Domain: $x \leq 2$

$\lim _{x \rightarrow 2} f(x)=\lim _{x \rightarrow 2^{-}} f(x)=-\infty$

Graph of $f(x)=\frac{1}{(x+3)^{4}}$

In Class Work

1. Determine each limit.
(a) $\lim _{x \rightarrow 2} \frac{x-4}{x^{2}-4 x+4}$
(b) $\lim _{x \rightarrow 0} e^{-2 / x}$
(c) $\lim _{x \rightarrow \infty} \frac{x^{3}-2}{3 x^{2}+4 x-1}$
2. Determine all horizontal and vertical asymptotes of $f(x)=\frac{3 x^{2}+1}{x^{2}-2 x-3}$. For each vertical asymptote, determine whether $f(x) \rightarrow \infty$ or $f(x) \rightarrow-\infty$ on either side of the asymptote.

Solutions to In Class Work

1. Determine each limit.
(a) $\lim _{x \rightarrow 2} \frac{x-4}{x^{2}-4 x+4}$

- As $x \rightarrow 2, x-4 \rightarrow-2$
- As $x \rightarrow 2, x^{2}-4 x+4=(x-2)(x-2) \rightarrow 0$

Thus the limit does not exist, but in what way?

- As $x \rightarrow 2^{-}, f(x) \rightarrow \frac{-}{(-)(-)}=-\infty$
- As $x \rightarrow 2^{+}, f(x) \rightarrow \frac{-}{(+)(+)}=-\infty$

Thus $\lim _{x \rightarrow 2} \frac{x-4}{x^{2}-4 x+4}=-\infty$.

Solutions to In Class Work

1. Determine each limit.
(b) $\lim _{x \rightarrow 0} e^{-2 / x}$

- Rewrite as $\lim _{x \rightarrow 0} \frac{1}{e^{2 / x}}$.
- As $x \rightarrow 0^{-}, \frac{2}{x} \rightarrow-\infty$.

As $x \rightarrow 0^{+}, \frac{2_{2}^{x}}{x} \rightarrow \infty$.
$\lim _{x \rightarrow 0} \frac{2}{x}$ d.n.e.

- $e^{\text {really large positive number }}$ is really large
$e^{\text {really large negative number }}$ is very small

Therefore totally different things are happening to our function, depending on what side we're approaching 0 from.
$\lim _{x \rightarrow 0} \frac{1}{e^{2 / x}}$ does not exist.

Solutions to In Class Work

1. Determine each limit.
(c) $\lim _{x \rightarrow \infty} \frac{x^{3}-2}{3 x^{2}+4 x-1}$

Rational function.

- Degree of numerator $=3$
- Degree of denominator $=2$
- Degree of numerator $>$ degree of denominator
- Numerator approaches infinity much faster than denominator
- Coefficient of x^{3} in numerator is 1 , coefficient of x^{2} in denominator is 3 - both are positive.

$$
\lim _{x \rightarrow \infty} \frac{x^{3}-2}{3 x^{2}+4 x-1}=\infty
$$

Solutions to In Class Work

2. Determine all horizontal and vertical asymptotes of $f(x)=\frac{3 x^{2}+1}{x^{2}-2 x-3}$. For each vertical asymptote, determine whether $f(x) \rightarrow \infty$ or $f(x) \rightarrow-\infty$ on either side of the asymptote.

Vertical Asymptotes:

- $f(x)=\frac{3 x^{2}+1}{x^{2}-2 x-3}=\frac{3 x^{2}+1}{(x-3)(x+1)}$
- Thus vertical asymptotes exist at $x=3$ and $x=-1$.
- $x=3$:
- As $x \rightarrow 3^{-}$, we have $\frac{+}{(-)(+)}=-$, so $\lim _{x \rightarrow 3^{-}} f(x)=-\infty$
- As $x \rightarrow 3^{+}$, we have $\frac{+}{(+)(+)}=+$, so $\lim _{x \rightarrow 3^{+}} f(x)=\infty$

Solutions to In Class Work

2. Determine all horizontal and vertical asymptotes of $f(x)=\frac{3 x^{2}+1}{x^{2}-2 x-3}$. For each vertical asymptote, determine whether $f(x) \rightarrow \infty$ or $f(x) \rightarrow-\infty$ on either side of the asymptote.

Vertical Asymptotes, continued

- Thus vertical asymptotes exist at $x=3$ and $x=-1$.
- $x=-1$:
- As $x \rightarrow-1^{-}$, we have $\frac{+}{(-)(-)}=+$, so $\lim _{x \rightarrow-1^{-}} f(x)=\infty$
- As $x \rightarrow-1^{+}$, we have $\frac{+}{(-)(+)}=-$, so $\lim _{x \rightarrow-1^{+}} f(x)=-\infty$

2. Determine all horizontal and vertical asymptotes of $f(x)=\frac{3 x^{2}+1}{x^{2}-2 x-3}$. For each vertical asymptote, determine whether $f(x) \rightarrow \infty$ or $f(x) \rightarrow-\infty$ on either side of the asymptote.

Horizontal Asymptotes:

- Need to find $\lim _{x \rightarrow \infty} f(x), \lim _{x \rightarrow-\infty} f(x)$.
- Degree of numerator=2
- Degree of denominator $=2$
- Numerator and denominator have the same degree
- Neither dominates over the other
- Limit at ∞ will be ratio of leading coefficients
- Coefficient of x^{2} in numerator is 3 , coefficient of x^{2} in denominator is 1
- $\lim _{x \rightarrow \infty} f(x)=\frac{3}{1}=3$
- As for $-\infty$, just need to check if anything becomes negative.
- Because highest degree of both is even, negative aren't introduced, so

$$
\lim _{x \rightarrow-\infty} f(x)=\frac{3}{1}=3
$$

2. Determine all horizontal and vertical asymptotes of $f(x)=\frac{3 x^{2}+1}{x^{2}-2 x-3}$. For each vertical asymptote, determine whether $f(x) \rightarrow \infty$ or $f(x) \rightarrow-\infty$ on either side of the asymptote.

Conclusion: $f(x)$ has a

- horizontal asymptote at $y=3$
- vertical asymptote at $x=-1$. $\lim _{x \rightarrow-1^{-}} f(x)=\infty, \lim _{x \rightarrow-1^{+}} f(x)=-\infty$.
- 2nd vertical asymptote at $x=3$. $\lim _{x \rightarrow 3^{-}} f(x)=-\infty, \lim _{x \rightarrow 3^{+}} f(x)=\infty$.

2. Determine all horizontal and vertical asymptotes of $f(x)=\frac{3 x^{2}+1}{x^{2}-2 x-3}$. For each vertical asymptote, determine whether $f(x) \rightarrow \infty$ or $f(x) \rightarrow-\infty$ on either side of the asymptote.

Conclusion: $f(x)$ has a

- horizontal asymptote at $y=3$
- vertical asymptote at $x=-1$. $\lim _{x \rightarrow-1^{-}} f(x)=\infty, \lim _{x \rightarrow-1^{+}} f(x)=-\infty$.
- 2nd vertical asymptote at $x=3$. $\lim _{x \rightarrow 3^{-}} f(x)=-\infty, \lim _{x \rightarrow 3^{+}} f(x)=\infty$.

