Recall: Slope of Secant Line $=$ Ave. Rate of Change

 If we are looking at the graph of $y=f(x)$, thenslope of secant line from $x=a$ to $x=b=\frac{\text { rise }}{\text { run }}$

$$
\begin{aligned}
& =\frac{\Delta y}{\Delta x} \\
& =\frac{f(b)-f(a)}{b-a}
\end{aligned}
$$

If we are looking at an object whose position is given by $f(t)$, then

$$
\text { average r.o.c. from } \begin{aligned}
t & =a \text { to } t=b=\frac{\text { change in position }}{\text { time }} \\
& =\frac{f\left(t_{\text {final }}\right)-f\left(t_{\text {initial }}\right)}{t_{\text {Final }}-t_{\text {initial }}} \\
& =\frac{f(b)-f(a)}{b-a} .
\end{aligned}
$$

What We're Really Interested In:

- Slope of a Curve (i.e, slope of the line tangent to the curve)
- Instantaneous Rate of Change

What We're Really Interested In:

- Slope of a Curve (i.e, slope of the line tangent to the curve) The closer b is to a, the closer the slope of the secant line is to the slope of the curve itself at $x=a$.

$$
\text { slope of tangent line at } x=a=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} .
$$

- Instantaneous Rate of Change

The smaller the time interval, the closer the average rate of change is to the instantaneous rate of change at $t=a$.

$$
\text { inst r.o.c. at } t=a \text { is } \lim _{t \rightarrow a} \frac{f(t)-f(a)}{t-a}
$$

\therefore Slope of Curve at $x=a=$ Inst. R. of C. at $x=a$

In Class Work

1. Use the limit definition to find the slope of the line tangent to $f(x)=x^{2}-3 x$ at the following points.

If you happen to have learned a short cut for this process in a past class, do NOT use it here. The point of this work is to practice with and understand the limit definition of the slope of the secant line.
(a) $x=0$
(b) $x=-2$
(c) An unspecified point x
2. Find the equation of the line tangent to $f(x)=x^{2}-3 x$ at $x=-2$.

Solutions

1. Use the limit definition to find the slope of the line tangent to $f(x)=x^{2}-3 x$ at:
(a) $x=0$

$$
\begin{aligned}
m_{t a n} & =\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[(h)^{2}-3(h)\right]-\left[0^{2}-3(0)\right]}{h} \\
& =\lim _{h \rightarrow 0} \frac{h^{2}-3 h}{h} \\
& =\lim _{h \rightarrow 0} h-3 \\
& =-3
\end{aligned}
$$

Solutions

1. Use the limit definition to find the slope of the line tangent to $f(x)=x^{2}-3 x$ at the following points.
(b) $x=-2$

$$
\begin{aligned}
m_{t a n} & =\lim _{h \rightarrow 0} \frac{f(-2+h)-f(-2)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[(-2+h)^{2}-3(-2+h)\right]-\left[2^{2}-3(-2)\right]}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left(4-4 h+h^{2}+6-3 h\right)-(4+6)}{h} \\
& =\lim _{h \rightarrow 0} \frac{-4 h+h^{2}-3 h}{h}=\lim _{h \rightarrow 0}-4+h-3 \\
& =-7
\end{aligned}
$$

Solutions

1. Use the limit definition to find the slope of the line tangent to $f(x)=x^{2}-3 x$ at:
(c) An unspecified point x

$$
\begin{aligned}
m_{t a n} & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[(x+h)^{2}-3(x+h)\right]-\left[x^{2}-3(x)\right]}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left(x^{2}+2 x h+h^{2}-3 x-3 h\right)-\left(x^{2}-3 x\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 x h+h^{2}-3 h}{h} \\
& =\lim _{h \rightarrow 0} 2 x+h-3 \\
& =2 x-3
\end{aligned}
$$

Solutions

2. Find the equation of the line tangent to $f(x)=x^{2}-3 x$ at $x=-2$.

Need: point and a slope
Slope: $m_{\tan }(-2)=-7$
Point: Use point of tangency, $(-2, f(-2))=(-2,4+6)=(-2,10)$
Thus the tangent line is given by

$$
y-10=-7(x+2) \Longrightarrow y=-7 x-4
$$

