In Class Work

1. Use the limit definition to find the slope of the line tangent to $f(x)=x^{2}-3 x$ at the following points.

If you happen to have learned a short cut for this process in a past class, do NOT use it here. The point of this work is to practice with and understand the limit definition of the slope of the secant line.
(a) $a=0$
(b) $a=-2$
(c) An unspecified point $a=x$
2. Find the equation of the line tangent to $f(x)=x^{2}-3 x$ at $a=-2$.

Solutions

1. Use the limit definition to find the slope of the line tangent to $f(x)=x^{2}-3 x$ at:
(a) $a=0$

$$
\begin{aligned}
m_{t a n} & =\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[(h)^{2}-3(h)\right]-\left[0^{2}-3(0)\right]}{h} \\
& =\lim _{h \rightarrow 0} \frac{h^{2}-3 h}{h} \\
& =\lim _{h \rightarrow 0} h-3 \\
& =-3
\end{aligned}
$$

Solutions

1. Use the limit definition to find the slope of the line tangent to $f(x)=x^{2}-3 x$ at the following points.
(b) $a=-2$

$$
\begin{aligned}
m_{t a n} & =\lim _{h \rightarrow 0} \frac{f(-2+h)-f(-2)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[(-2+h)^{2}-3(-2+h)\right]-\left[2^{2}-3(-2)\right]}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left(4-4 h+h^{2}+6-3 h\right)-(4+6)}{h} \\
& =\lim _{h \rightarrow 0} \frac{-4 h+h^{2}-3 h}{h}=\lim _{h \rightarrow 0}-4+h-3 \\
& =-7
\end{aligned}
$$

Solutions

1. Use the limit definition to find the slope of the line tangent to $f(x)=x^{2}-3 x$ at:
(c) An unspecified point $a=x$

$$
\begin{aligned}
m_{\tan } & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[(x+h)^{2}-3(x+h)\right]-\left[x^{2}-3(x)\right]}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left(x^{2}+2 x h+h^{2}-3 x-3 h\right)-\left(x^{2}-3 x\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 x h+h^{2}-3 h}{h} \\
& =\lim _{h \rightarrow 0} 2 x+h-3 \\
& =2 x-3
\end{aligned}
$$

Solutions

2. Find the equation of the line tangent to $f(x)=x^{2}-3 x$ at $a=-2$.

Need: point and a slope
Slope: $m_{\tan }(-2)=-7$
Point: Use point of tangency, $(-2, f(-2))=(-2,4+6)=(-2,10)$
Thus the tangent line is given by

$$
y-10=-7(x+2) \Longrightarrow y=-7 x-4
$$

In Class Work

Consider the function $f(x)$ shown in the graph.

1. At $x=-4$:
(a) is f increasing or decreasing?
(b) is the inst. rate of change >0 ?
(c) is $m_{\text {tan }}>0$?
2. For what x is the inst. rate of change of f zero?
3. At $x=3$:
(a) is f increasing faster and faster, or slower and slower?
(b) is the rate of change increasing or decreasing?
(c) is $m_{\text {tan }}$ increasing or decreasing?
4. For what x does the slope of f reach a maximum?
5. Roughly sketch the graph of $m_{t a n} \bar{\equiv}$

Solutions:

Consider the function $f(x)$ shown in th graph.

1. At $x=-4$:
(a) is f increasing or decreasing? f is decreasing at $x=-4$
(b) is the rate of change >0 ?

No: because f is decreasing at $x=-4$, the rate of change is negative.
(c) is $m_{\text {tan }}>0$?

No: because the function is decreasing at $x=-4$, it is sloping downward.

Solutions

Consider the function $f(x)$ shown in the graph.
2. For what x is the rate of change of f zero?

The points where the rate of change is 0 are the points where f isn't changing - neither increasing nor decreasing.

That is, they are the points where the slope of the tangent line is 0 : the points where the graph is flat.

These points occur at $x=-2$ and $x=4$.

Solutions

Consider the function $f(x)$ shown in the graph.
3. At $x=3$:
(a) is f increasing faster and faster, or slower and slower?

At $x=3, f$ is increasing, but it's slowing down.
(b) is the rate of change increasing or decreasing?

At $x=3$, the rate of change is decreasing.
(c) is $m_{\text {tan }}$ increasing or decreasing?

At $x=3, m_{\text {tan }}$ is decreasing.

Solutions

Consider the function $f(x)$ shown in the graph.

4. For what x does the slope of f reach a maximum?

At $x=-2, m_{\text {tan }}=0$.
As we move to the right, the slope starts out small but increases.

That continues until we reach about $x=1$ (the inflection point).

After $x=1$, the the slope decreases until it reaches 0 again at $x=4$.

Thus the slope reaches a maximum at $x=1$, roughly.

Solutions

Consider the function $f(x)$ shown in the graph.
5. Roughly sketch the graph of $m_{t a n}$ $m_{\text {tan }}>0$ on $(-2,4), m_{\text {tan }}<0$ on $[-4.5,-2)$ and $(4,4.5]$
$m_{t a n}$ is increasing from 0 to its maximum on $[-2,1)$ and then decreasing to 0 on (1,4].

From $x=-4$ to $x=-2, m_{\text {tan }}$ is going from being very negative to being closer and closer to 0 , so it's increasing.

From $x=4$ to $x=4.5, m_{\text {tan }}$ is going from being 0 to being more and more negative, so it's decreasing.

Graphs of $f(x)=x^{2}-3 x$ and the function that gives the slope of f at any point x, which we found to be $2 x-3$.

Notice that $f(x)$ is decreasing up until about $x=1.5$ and that the graph that shows its slope is negative over the same interval. At $x=1.5, f(x)$ is flat - that is, it isn't changing, or its tangent line is horizontal - and the graph of its slope is 0 there. And finally, to the right of $x=1.5$, the graph of $f(x)$ is increasing, and the graph of its slope is positive.

In Class Work

1. Use the limit definition to find the slope of the line tangent to $f(x)$ at an unspecified point x :
(a) $f(x)=2 x$
(b) $f(x)=x^{2}$
(c) $f(x)=5$

Solutions

1. Use the limit definition to find the slope of the line tangent to $f(x)$ at an unspecified point x :
(a) $f(x)=2 x$

$$
\begin{aligned}
m_{t a n} & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{2(x+h)-2 x}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 h}{h}=\lim _{h \rightarrow 0} 2 \\
& =2
\end{aligned}
$$

Thus the slope of the tangent line is always 2 , no matter what x we're looking at.

In other words, the graph of $2 x$ has a constant slope of 2 .
Question: What does having a constant slope tell us about the graph of $f(x)$?

Solutions

1. Use the limit definition to find the slope of the line tangent to $f(x)$ at an unspecified point x :
(b) $f(x)=x^{2}$

$$
\begin{aligned}
m_{t a n} & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{x^{2}+2 x h+h^{2}-x^{2}}{h} \\
& =\lim _{h \rightarrow 0}(2 x+h) \\
& =2 x
\end{aligned}
$$

So now we know that the graph of x^{2} has a slope of 4 at $x=2$, a slope of 2 at $x=1$, a slope of -2 at $x=-1$, etc.

Solutions

1. Use the limit definition to find the slope of the line tangent to $f(x)$ at an unspecified point x :
(c) $f(x)=5$

$$
\begin{aligned}
m_{\tan } & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{(5)-(5)}{h} \\
& =\lim _{h \rightarrow 0} 0 \\
& =0
\end{aligned}
$$

