In Class Work

1. Roughly sketch the graph of the derivative of the function whose graph is shown.
2. Use the limit definition of the derivative to find $f^{\prime}(x)$:
(a) $f(x)=2 x$
(b) $f(x)=x^{2}$
(c) $f(x)=5$
(d) $f(x)=x^{3}$
(e) $f(x)=x^{-1}=\frac{1}{x}$
3. Find the equation of the line tangent to $y=x^{3}$ at $x=-2$

Hints:

- $(a+b)^{3}=$ $a^{3}+3 a^{2} b+3 a b^{2}+b^{3}$
- Remember common denominators

Solutions

1. Sketch the graph of the derivative of the function whose graph is shown.

The slope is:

- negative; going from very negative toward 0 on $[-4,-3]$
- positive; increasing on $[-3,-1]$
- positive; decreasing toward 0 on $[-1,1$]
- negative; going from 0 toward very negative on [1,3]
- negative; heading back toward 0 (but not reaching it) on $[3,4]$

Solutions

2. Use the limit definition of the derivative to find the derivative of the following:
(a) $f(x)=2 x$

$$
\begin{aligned}
m_{t a n} & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{2(x+h)-2 x}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 h}{h}=\lim _{h \rightarrow 0} 2 \\
& =2
\end{aligned}
$$

Thus the slope of the tangent line is always 2 , no matter what x we're looking at.

In other words, the graph of $2 x$ has a constant slope of 2 .
Question: What does having a constant slope tell us about the graph of $f(x)$?

Solutions

2. Use the limit definition of the derivative to find the derivative of the following:
(b) $f(x)=x^{2}$

$$
\begin{aligned}
m_{t a n} & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{x^{2}+2 x h+h^{2}-x^{2}}{h} \\
& =\lim _{h \rightarrow 0}(2 x+h) \\
& =2 x
\end{aligned}
$$

So now we know that the graph of x^{2} has a slope of 4 at $x=2$, a slope of 2 at $x=1$, a slope of -2 at $x=-1$, etc.

Solutions

2. Use the limit definition of the derivative to find the derivative of the following:
(c) $f(x)=5$

$$
\begin{aligned}
m_{\tan } & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{(5)-(5)}{h} \\
& =\lim _{h \rightarrow 0} 0 \\
& =0
\end{aligned}
$$

Solutions

2. Use the limit definition of the derivative to find the derivative of the following:
(d) $f(x)=x^{3}$

Time-saver: $(a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}$

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(x+h)^{3}-x^{3}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left(x^{3}+3 x^{2} h+3 x h^{2}+h^{3}\right)-x^{3}}{h} \\
& =\lim _{h \rightarrow 0}\left(3 x^{2}+3 x h+h^{2}\right) \\
& =3 x^{2}
\end{aligned}
$$

Solutions

2. (e) $f(x)=x^{-1}=\frac{1}{x}$

Remember common denominators

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{\frac{1}{x+h}-\frac{1}{x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{1}{x+h}-\frac{1}{x}\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h} \frac{x-(x+h)}{x(x+h)} \\
& =\lim _{h \rightarrow 0} \frac{-h}{x h(x+h)} \\
& =\lim _{h \rightarrow 0} \frac{-1}{x(x+h)} \\
& =-\frac{1}{x^{2}} \\
& =-x^{-2}
\end{aligned}
$$

3. Find the equation of the line tangent to $y=x^{3}$ at $x=-2$

Need: point, slope

Slope: Since $f^{\prime}(x)=3 x^{2}, m_{\tan }=f^{\prime}(-2)=3(-2)^{2}=12$

Point: point of tangency is $(-2, f(-2))=\left(-2,(-2)^{3}\right)=(-2,-8)$.

Tangent line:

$$
y+8=12(x+2) \Longrightarrow y=12 x+16
$$

Summary: Derivatives Found Using Limit Definition

$$
\begin{aligned}
f(x)=5 & \Longrightarrow f^{\prime}(x)=0 \text { (Fri 9/23) } \\
f(x)=2 x & \Longrightarrow f^{\prime}(x)=2(\text { Fri 9/23) } \\
f(x)=x^{2} & \Longrightarrow f^{\prime}(x)=2 x^{1}(\text { Fri 9/23) } \\
f(x)=x^{3} & \Longrightarrow f^{\prime}(x)=3 x^{2} \text { (Fri 9/23) } \\
f(x)=x^{-1} & \Longrightarrow f^{\prime}(x)=-x^{-2} \text { (Fri 9/23) } \\
f(x)=x^{1 / 2} & \Longrightarrow f^{\prime}(x)=\frac{1}{2} x^{-1 / 2} \text { (Reading for Fri) } \\
f(x)=x^{2}-3 x & \Longrightarrow f^{\prime}(x)=2 x-3 \text { (Th 9/22) } \\
f(x)=2 x^{2}-3 x & \Longrightarrow f^{\prime}(x)=4 x-3 \text { (RQ for Fri 9/23) } \\
f(x)=3 x^{3}+2 x-1 & \Longrightarrow f^{\prime}\left(x=9 x^{2}+2\right. \text { (Reading for F) }
\end{aligned}
$$

Summary: Derivatives Found Using Limit Definition

$$
\begin{aligned}
f(x)=5 x^{0} & \Longrightarrow f^{\prime}(x)=0 \text { (Fri 9/24) } \\
f(x)=2 x^{1} & \Longrightarrow f^{\prime}(x)=2(1) \text { (Fri 9/24) } \\
f(x)=x^{2} & \Longrightarrow f^{\prime}(x)=2 x^{1} \text { (Fri 9/24) } \\
f(x)=x^{3} & \Longrightarrow f^{\prime}(x)=3 x^{2} \text { (Fri 9/24) } \\
f(x)=x^{-1} & \Longrightarrow f^{\prime}(x)=-1 x^{-2} \text { (Fri 9/24) } \\
f(x)=x^{1 / 2} & \Longrightarrow f^{\prime}(x)=\frac{1}{2} x^{-1 / 2} \text { (Reading for Fri) } \\
f(x)=x^{2}-3 x^{1} & \Longrightarrow f^{\prime}(x)=2 x-3(1) \text { (Th 9/23) } \\
f(x)=2 x^{2}-3 x^{1} & \Longrightarrow f^{\prime}(x)=2(2) x^{1}-3(1) \text { (RQ for Fri 9/24) } \\
f(x)=3 x^{3}+2 x^{1}-1\left(x^{0}\right) & \Longrightarrow f^{\prime}(x)=3(3) x^{2}+2(1)+0 \text { (Reading for F) }
\end{aligned}
$$

Summary: Derivatives Found Using Limit Definition

$$
\begin{aligned}
& f(x)=5 x^{0} \Longrightarrow f^{\prime}(x)=0 \text { (Fri 9/24) } \\
& f(x)=2 x^{1} \Longrightarrow f^{\prime}(x)=2(1) \text { (Fri 9/24) } \\
& f(x)=x^{2} \Longrightarrow f^{\prime}(x)=2 x^{1} \text { (Fri 9/24) } \\
& f(x)=x^{3} \Longrightarrow f^{\prime}(x)=3 x^{2} \text { (Fri 9/24) } \\
& f(x)=x^{-1} \Longrightarrow f^{\prime}(x)=-1 x^{-2} \text { (Fri 9/24) } \\
& f(x)=x^{1 / 2} \Longrightarrow f^{\prime}(x)=\frac{1}{2} x^{-1 / 2} \text { (Reading for Fri) } \\
& f(x)=x^{2}-3 x^{1} \Longrightarrow f^{\prime}(x)=2 x-3(1)(\text { Th 9/23) } \\
& f(x)=2 x^{2}-3 x^{1} \Longrightarrow f^{\prime}(x)=2(2) x^{1}-3(1) \text { (RQ for Fri 9/24) } \\
& f(x)=3 x^{3}+2 x^{1}-1\left(x^{0}\right) \Longrightarrow f^{\prime}(x)=3(3) x^{2}+2(1)+0 \text { (Reading for F) } \\
& \text { Conjectures: Looks as if } \frac{d}{d x}\left(x^{n}\right)=n x^{n-1}, \\
& \frac{d}{d x}(f(x) \pm g(x))=f^{\prime}(x) \pm g^{\prime}(x) \text {, and } \frac{d}{d x}(c f(x))=c f^{\prime}(x) \\
& \text { Math 101-Calculus 1 (Skkensky) } \text { In-Class Work }
\end{aligned}
$$

Remember: Pascal's Triangle

$$
\begin{gathered}
(x+h)^{0} \\
(x+h)^{1} \\
(x+h)^{2} \\
(x+h)^{3} \\
(x+h)^{4} \\
(x+h)^{5}
\end{gathered}
$$

Remember: Pascal's Triangle

$$
\begin{array}{cc}
(x+h)^{0} & 1 \\
(x+h)^{1} & x+h \\
(x+h)^{2} & x^{2}+2 x h+h^{2} \\
(x+h)^{3} & x^{3}+3 x^{2} h+3 x h^{2}+h^{3} \\
(x+h)^{4} & x^{4}+4 x^{3} h+6 x^{2} h^{2}+4 x h^{3}+h^{4} \\
(x+h)^{5} &
\end{array}
$$

Remember: Pascal's Triangle

\[

\]

