Recall:

Let $f(x)$ be a function.
The derivative of f at x is the slope of the line tangent to f at any point $x \ldots$ which is the same as the instantaneous rate of change of f at any point x.

We represent the derivative of f at x by $f^{\prime}(x)$

Definition: $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$

The process of computing the derivative function is called taking the derivative, or differentiating.

Summary: Derivatives Found Using Limit Definition

$$
\begin{aligned}
f(x)=5 & \Longrightarrow f^{\prime}(x)=0(\text { Fri } 9 / 23) \\
f(x)=2 x & \Longrightarrow f^{\prime}(x)=2(\text { Fri } 9 / 23) \\
f(x)=x^{2} & \Longrightarrow f^{\prime}(x)=2 x^{1}(\text { Fri } 9 / 23) \\
f(x)=x^{1 / 2} & \Longrightarrow f^{\prime}(x)=\frac{1}{2} x^{-1 / 2} \text { (Reading for Fri) }
\end{aligned}
$$

$$
f(x)=x^{2}-3 x \Longrightarrow f^{\prime}(x)=2 x-3(\text { Th } 9 / 22)
$$

$$
f(x)=2 x^{2}-3 x \Longrightarrow f^{\prime}(x)=4 x-3(\text { RQ for Fri } 9 / 23)
$$

$$
f(x)=3 x^{3}+2 x-1 \quad \Longrightarrow \quad f^{\prime}\left(x=9 x^{2}+2(\text { Reading for } \mathrm{F})\right.
$$

Alternative Notation for the Derivative:

If I want you to take the derivative of $x^{5}-7 x^{4}+15 x^{3}-12 x^{2}+42 x-16$, I could write:

Find $\left(x^{5}-7 x^{4}+15 x^{3}-12 x^{2}+42 x-16\right)^{\prime}$.

But the actual mathematical instruction comes at the very end that way.

Alternative Notation for the Derivative:

If I want you to take the derivative of $x^{5}-7 x^{4}+15 x^{3}-12 x^{2}+42 x-16$, I could write:

Find $\left(x^{5}-7 x^{4}+15 x^{3}-12 x^{2}+42 x-16\right)^{\prime}$.

But the actual mathematical instruction comes at the very end that way.

Instead, use Leibniz notation:
Find $\frac{d}{d x}\left(x^{5}-7 x^{4}+15 x^{3}-12 x^{2}+42 x-16\right)$

Solutions to Friday's In Class Work

2. Use the limit definition of the derivative to find the derivative of the following:
(d) $f(x)=x^{3}$

Time-saver: $(a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}$

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(x+h)^{3}-x^{3}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left(x^{3}+3 x^{2} h+3 x h^{2}+h^{3}\right)-x^{3}}{h} \\
& =\lim _{h \rightarrow 0}\left(3 x^{2}+3 x h+h^{2}\right) \\
& =3 x^{2}
\end{aligned}
$$

Solutions to Friday's In Class Work

2. (e) $f(x)=x^{-1}=\frac{1}{x}$

Remember common denominators

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{\frac{1}{x+h}-\frac{1}{x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{1}{x+h}-\frac{1}{x}\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h} \frac{x-(x+h)}{x(x+h)} \\
& =\lim _{h \rightarrow 0} \frac{-h}{x h(x+h)} \\
& =\lim _{h \rightarrow 0} \frac{-1}{x(x+h)} \\
& =-\frac{1}{x^{2}} \\
& =-x^{-2}
\end{aligned}
$$

Summary: Derivatives Found Using Limit Definition

$$
\begin{aligned}
f(x)=5 & \Longrightarrow f^{\prime}(x)=0(\text { Fri 9/23) } \\
f(x)=2 x & \Longrightarrow f^{\prime}(x)=2(\text { Fri 9/23) } \\
f(x)=x^{2} & \Longrightarrow f^{\prime}(x)=2 x^{1}(\text { Fri } 9 / 23) \\
f(x)=x^{3} & \Longrightarrow f^{\prime}(x)=3 x^{2}(\text { Fri } 9 / 23) \\
f(x)=x^{-1} & \Longrightarrow f^{\prime}(x)=-x^{-2}(\text { Fri 9/23) } \\
f(x)=x^{1 / 2} & \Longrightarrow f^{\prime}(x)=\frac{1}{2} x^{-1 / 2} \text { (Reading for Fri) }
\end{aligned}
$$

$$
f(x)=x^{2}-3 x \Longrightarrow f^{\prime}(x)=2 x-3(\text { Th } 9 / 22)
$$

$$
f(x)=2 x^{2}-3 x \Longrightarrow f^{\prime}(x)=4 x-3(\mathrm{RQ} \text { for Fri } 9 / 23)
$$

$$
f(x)=3 x^{3}+2 x-1 \Longrightarrow f^{\prime}\left(x=9 x^{2}+2 \text { (Reading for } \mathrm{F}\right)
$$

Recall: Derivatives Found Using Limit Definition

$$
\begin{aligned}
f(x)=5 x^{0} & \Longrightarrow f^{\prime}(x)=0 \text { (Fri 9/24) } \\
f(x)=2 x^{1} & \Longrightarrow f^{\prime}(x)=2(1)(\text { Fri 9/24) } \\
f(x)=x^{2} & \Longrightarrow f^{\prime}(x)=2 x^{1}(\text { Fri 9/24) } \\
f(x)=x^{3} & \Longrightarrow f^{\prime}(x)=3 x^{2}(\text { Fri 9/24) } \\
f(x)=x^{-1} & \Longrightarrow f^{\prime}(x)=-x^{-2}(\text { Fri 9/24) } \\
f(x)=x^{1 / 2} & \Longrightarrow f^{\prime}(x)=\frac{1}{2} x^{-1 / 2} \text { (Reading for Fri) } \\
f(x)=x-3 x^{1} & \Longrightarrow f^{\prime}(x)=x-3(1)(\text { Th 9/23) } \\
f(x)=2 x^{2}-3 x^{1} & \Longrightarrow f^{\prime}(x)=2(2) x^{1}-3(1) \text { (RQ for Fri 9/24) } \\
f(x)=3 x^{3}+2 x^{1}-1\left(x^{0}\right) & \Longrightarrow f^{\prime}(x)=3(3) x^{2}+2(1)+0 \text { (Reading for F) }
\end{aligned}
$$

Recall: Derivatives Found Using Limit Definition

$$
\begin{aligned}
f(x)=5 x^{0} & \Longrightarrow f^{\prime}(x)=0 \text { (Fri 9/24) } \\
f(x)=2 x^{1} & \Longrightarrow f^{\prime}(x)=2(1) \text { (Fri 9/24) } \\
f(x)=x^{2} & \Longrightarrow f^{\prime}(x)=2 x^{1} \text { (Fri 9/24) } \\
f(x)=x^{3} & \Longrightarrow f^{\prime}(x)=3 x^{2} \text { (Fri 9/24) } \\
f(x)=x^{-1} & \Longrightarrow f^{\prime}(x)=-x^{-2} \text { (Fri 9/24) } \\
f(x)=x^{1 / 2} & \Longrightarrow f^{\prime}(x)=\frac{1}{2} x^{-1 / 2} \text { (Reading for Fri) } \\
f(x)=x-3 x^{1} & \Longrightarrow f^{\prime}(x)=x-3(1) \text { (Th 9/23) } \\
f(x)=2 x^{2}-3 x^{1} & \Longrightarrow f^{\prime}(x)=2(2) x^{1}-3(1) \text { (RQ for Fri 9/24) } \\
f(x)=3 x^{3}+2 x^{1}-1\left(x^{0}\right) & \Longrightarrow f^{\prime}(x)=3(3) x^{2}+2(1)+0 \text { (Reading for F) }
\end{aligned}
$$

Conjectures: Looks as if $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$,
$\frac{d}{d x}(f(x) \pm g(x))=f^{\prime}(x) \pm g^{\prime}(x)$, and $\frac{d}{d x}(c f(x))=c f^{\prime}(x)$

Are the Conjectures True?

1. $\frac{d}{d x}(f(x) \pm g(x))=f^{\prime}(x) \pm g^{\prime}(x)$ - follows directly from limit rules:

$$
\begin{aligned}
\frac{d}{d x}(f(x) \pm g(x)) & =\lim _{h \rightarrow 0} \frac{(f(x+h) \pm g(x+h))-(f(x) \pm g(x))}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \pm \lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h} \\
& =f^{\prime}(x) \pm g^{\prime}(x)
\end{aligned}
$$

2. $\frac{d}{d x}(c f(x))=c f^{\prime}(x)$ - also follows directly from limit rules

$$
\begin{aligned}
\frac{d}{d x}(c f(x)) & =\lim _{h \rightarrow 0} \frac{c f(x+h)-c f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{c(f(x+h)-f(x))}{h} \\
& =c \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=c f^{\prime}(x)
\end{aligned}
$$

3. How about $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$?

Remember: Pascal's Triangle

$$
\begin{aligned}
& (x+h)^{0} \\
& (x+h)^{1} \\
& (x+h)^{2} \\
& (x+h)^{3} \\
& (x+h)^{4} \\
& (x+h)^{5}
\end{aligned}
$$

Remember: Pascal's Triangle

$$
\begin{array}{cc}
(x+h)^{0} & 1 \\
(x+h)^{1} & x+h \\
(x+h)^{2} & x^{2}+2 x h+h^{2} \\
(x+h)^{3} & x^{3}+3 x^{2} h+3 x h^{2}+h^{3} \\
(x+h)^{4} & x^{4}+4 x^{3} h+6 x^{2} h^{2}+4 x h^{3}+h^{4} \\
(x+h)^{5} &
\end{array}
$$

Remember: Pascal's Triangle

$$
\begin{aligned}
& (x+h)^{0} \\
& (x+h)^{1} \\
& (x+h)^{2} \\
& (x+h)^{3} \\
& \begin{array}{c}
1 \\
x+h \\
x^{2}+2 x h+h^{2} \\
x^{3}+3 x^{2} h+3 x h^{2}+h^{3} \\
x^{4}+4 x^{3} h+6 x^{2} h^{2}+4 x h^{3}+h^{4}
\end{array} \\
& \begin{array}{cc}
(x+h)^{0} & 1 \\
(x+h)^{1} & x+h \\
(x+h)^{2} & x^{2}+2 x h+h^{2} \\
(x+h)^{3} & x^{3}+3 x^{2} h+3 x h^{2}+h^{3} \\
(x+h)^{4} & x^{4}+4 x^{3} h+6 x^{2} h^{2}+4 x h^{3}+h^{4} \\
(x+h)^{5} &
\end{array} \\
& (x+h)^{5}
\end{aligned}
$$

Properties of Derivatives We Know So Far:

- $\frac{d}{d x}(c)=0$-horizontal lines have slope 0 everywhere
- $\frac{d}{d x}(c f(x))=c f^{\prime}(x) . c f(x)$ grows c times faster than $f(x)$ does, so slope should be c times as big.
- $\frac{d}{d x}(f(x) \pm g(x))=f^{\prime}(x) \pm g^{\prime}(x)$ - follows from definition of derivative, and fact that limit of sum=sum of limits
- $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$ - the Power Rule

Verifying a derivative

Graphs of $f(x)=7 x^{e}-\frac{1}{42 x^{2}}$ and what we hope is in fact $f^{\prime}(x)$:
$7 e x^{e-1}+\frac{1}{21 x^{3}}$

- $f(x)$ never flat \Longrightarrow Slope $f^{\prime}(x)$ never 0
- $f(x)$ always \uparrow
\Longrightarrow Slope $f^{\prime}(x)>0$
- $f(x)$ steep near $x=0$
\Longrightarrow Slope $f^{\prime}(x)$ large near 0
- $f(x)$ becomes less \& less steep until $x=\sim 0.3$
\Longrightarrow Slope $f^{\prime}(x) \downarrow$ to
minimum at $x=\sim 0.3$.
- $f(x)$ then becomes steeper and steeper
\Longrightarrow Slope $f^{\prime}(x) \uparrow$ again.

Verifying three antiderivatives

Original function: $v(t)=p^{\prime}(t)=3 t^{2}$
Possible antiderivatives:

- $p(t)=t^{3}+27$
- $p(t)=t^{3}$
- $p(t)=t^{3}-43$

- $p^{\prime}(t)=0$ at $t=0 \Longrightarrow$ $p(t)$ is flat at $t=0$
- $p^{\prime}(t)>0$ for all $t \neq 0 \Longrightarrow$ $p(t) \uparrow$ for all $t \neq 0$
- $p^{\prime}(t)$ first \downarrow then $\uparrow \Longrightarrow$ $p(t)$ is getting flatter than steeper (since $p^{\prime}(t)>0$)

In Class Work

1. Find the derivatives of the following functions. If you have a graphing calculator, verify your answers by graphing f and f^{\prime} on the same set of axes.
(a) $f(x)=x^{2}-4 x^{1 / 2}+7$
(b) $f(x)=x^{3}-\frac{5}{x^{2}}+2$
(c) $f(x)=2 x^{\pi}+x^{-42}-17 x$
(d) $f(x)=\frac{7}{x}-x+4$
2. Find an antiderivative for each function in 1.

Solutions

1. Find the derivatives of the following functions.
(a) $f(x)=x^{2}-4 x^{1 / 2}+7$

$$
\Longrightarrow f^{\prime}(x)=2 x-2 x^{-1 / 2}
$$

$$
\begin{aligned}
& \text { (b) } f(x)=x^{3}-\frac{5}{x^{2}}+2 \\
& \Longrightarrow f^{\prime}(x)=3 x^{2}+10 x^{-3}
\end{aligned}
$$

Solutions

1. Find the derivatives of the following functions.

$$
\begin{aligned}
& \text { (c) } f(x)=2 x^{\pi}+x^{-42}-17 x \Longrightarrow \\
& f^{\prime}(x)=2 \pi x^{\pi-1}-42 x^{-43}-17
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=\frac{7}{x}-x+4 \\
& \Longrightarrow f^{\prime}(x)=-7 x^{-2}-1
\end{aligned}
$$

Solutions

2. Find an antiderivative for each function in 1.
(a) $f(x)=x^{2}-4 x^{1 / 2}+7 \Longrightarrow F(x)=x^{3} / 3-4\left(\frac{2}{3}\right) x^{3 / 2}+7 x$
(b) $f(x)=x^{3}-\frac{5}{x^{2}}+2 \Longrightarrow F(x)=x^{4} / 4+5 / x+2 x$
(c) $f(x)=2 x^{\pi}+x^{-42}-17 x \Longrightarrow$
$F(x)=2 x^{\pi+1} /(\pi+1)-x^{-41} / 41-17 x^{2} / 2$
(d) $f(x)=\frac{7}{x}-x+4 \Longrightarrow F(x)=$ uh oh!

When we try to follow our usual rule, it doesn't work!
Does that mean that there is no function that antidifferentiates to $1 / x$?

Not necessarily - we've only looked at a very small collection of functions so far! But it does mean that no power function differentiates to be $1 / x$!

