Types of Functions We Can't Yet Differentiate

- $f(x)=\left(x^{6}-14 x^{5}+27 x^{-3}-13\right)\left(101 x^{-1}+14 x^{6}+13-42 \sqrt{x}\right)$
$-g(x)=\frac{x^{7}-\sqrt{x}}{14 x^{2}+12}$
- $h(x)=\left(x^{2}+13 x-\frac{2}{x}\right)^{1 / 3}$
- $j(x)=\cos \left(x^{2}\right)$
- $k(x)=\sin \left(e^{14 x}\right)$
- $m(x)=\ln (\sqrt{x}-14)$

In Class Work - Higher Order Derivatives

Given $f(x)$, find the second derivative, $f^{\prime \prime}(x)$ (i.e. find $\frac{d^{2}}{d x^{2}}(f(x))$)

1. $f(x)=7 x^{3}-\frac{3}{x^{4}}$
2. $f(x)=8 \sqrt{x}+5$

Solutions to In Class Work - Higher Order Derivatives

Given $f(x)$, find the second derivative, $f^{\prime \prime}(x)$ (i.e. find $\frac{d^{2}}{d x^{2}}(f(x))$)

1. $f(x)=7 x^{3}-\frac{3}{x^{4}}$

First, rewrite $f(x)$ so the power rule clearly applies to each piece.

$$
\begin{gathered}
f(x)=7 x^{3}-3 x^{-4} \\
f^{\prime}(x)=21 x^{2}+12 x^{-5} \Longrightarrow f^{\prime \prime}(x)=42 x-60 x^{-6}
\end{gathered}
$$

2. $f(x)=8 \sqrt{x}+5$

Again, first rewrite $f(x)$ so we can clearly see how the power rule will help.

$$
\begin{gathered}
f(x)=8 x^{1 / 2}+5 \\
f^{\prime}(x)=4 x^{-1 / 2}+0=4 x^{-1 / 2} \Longrightarrow f^{\prime \prime}(x)=-2 x^{-3 / 2}
\end{gathered}
$$

Is $\frac{d}{d x}(f(x) g(x))=f^{\prime}(x) g^{\prime}(x) ?$
Example: If $\frac{d}{d x}\left[\left(x^{3}-x^{2}\right)\left(x^{3}+x^{2}\right)\right]=\left(3 x^{2}-2 x\right)\left(3 x^{2}+2 x\right)$?
Below, the product is black and the product of the two derivatives is red.

On [-1.2, -0.9] (ish), $f(x)$ is decreasing but the red function is positive.
On [-0.6, -.4] or so, $f(x)$ is increasing but the red function is negative.
On $[0.62,0.8], f(x)$ is decreasing but the red function is positive.
The red function is not the derivative of $f(x)$

$$
\begin{aligned}
& \frac{d}{d x}(f(x) g(x)) \\
& \quad=\lim _{h \rightarrow 0} \frac{f(x+h) g(x+h)-f(x) g(x)}{h} \\
& \quad=\lim _{h \rightarrow 0} \frac{f(x+h) g(x+h)-f(x) g(x+h)+f(x) g(x+h)-f(x) g(x)}{h} \\
& \quad=\lim _{h \rightarrow 0}\left(\frac{f(x+h) g(x+h)-f(x) g(x+h)}{h}+\frac{f(x) g(x+h)-f(x) g}{h}\right. \\
& \quad=\lim _{h \rightarrow 0}\left(\left[\frac{f(x+h)-f(x)}{h}\right] g(x+h)+f(x)\left[\frac{g(x+h)-g(x)}{h}\right]\right) \\
& \\
& =f^{\prime}(x) g(x)+f(x) g^{\prime}(x)
\end{aligned}
$$

Consider $f(x)=\frac{\left(x^{3}-x^{2}\right)}{\left(x^{3}+x^{2}\right)}$.
Is $f^{\prime}(x)=\frac{\left(3 x^{2}-2 x\right)}{\left(3 x^{2}+2 x\right)} ?$
Below the two are displayed: $f(x)$ is black and the quotient of the two derivatives is red.

$f(x)$ is always increasing, but the red function is negative for some x

On $[-1, \infty), f(x)$ is increasing more and more slowly, but the red function is increasing.
The red function is not the derivative of $f(x)$

