Local Extrema:

- Maximum=A high point on a graph. Plural: Maxima
- Minimum=A low point on a graph. Plural: Minima
- Extremum = An extreme point on the graph - that is, either a maximum or a minimum. Plural: Extrema
- Local $=$ in a neighborhood (just like in English!)
- A local maximum is as high or higher than any point nearby -a "peak". A local minimum is as low or lower than any point nearby a "valley".

Inflection Points

- While extrema are where a curve changes direction, inflection points are where a curve changes from being bent upward to being bent downward, or vice versa.

Exponential Functions:

An exponential function has the form

$$
f(x)=b^{x}
$$

where b is a fixed positive number, called the base.

Exponential Functions:

An exponential function has the form

$$
f(x)=b^{x}
$$

where b is a fixed positive number, called the base.

Examples: $g(x)=e^{x}, h(x)=3^{x}$, and $k(x)=4^{x}$ are all exponential functions.

Remember: e is an irrational number that shows up in many different places; like π it shows up enough that we give it's own name.

$$
e \approx 2.71828 \ldots
$$

In Class Work

1. (a) Is π^{x} an exponential function?
(b) Is x^{2} an exponential function?
2. If $f(x)=b^{x}$, where b is any positive number,
(a) what is $f(0)$? (Your answer may be in terms of b)
(b) what is $f(1)$? (Your answer may be in terms of b)
3. By plotting a few points, sketch the graphs of
(a) $y=2^{x}$
(b) $y=3^{x}$
4. If $b>0$, what is the domain of $f(x)=b^{x}$? How about the range?

Remember:

- the domain is the set of inputs - what x does it make sense to plug in;
- the range is the set of outputs - what values of $f(x)$ will you get out, if you plug in all possible values of x ?

Solutions - In Class Work

1. (a) Is π^{x} an exponential function?

Yes: the base, π is a constant, while the exponent is a variable.
(b) Is x^{2} an exponential function?

No: the base is a variable while the exponent is fixed. This is a power function.
2. If $f(x)=b^{x}$, where b is any positive number,
(a) what is $f(0)$?
$f(0)=b^{0}=1$.
Conclusion: The point $(0,1)$ is on every exponential function.
(b) what is $f(1)$?
$f(1)=b^{1}=b$.
Conclusion: The graph of b^{\times}goes through the point $(1, b)$.

Solutions - In Class Work

3. By plotting a few points, sketch the graphs of
(a) $y=2^{x}$
(b) $y=3^{x}$

2^{x}				
x	y			
-2	$2^{-2}=\frac{1}{2^{2}}=\frac{1}{4}$			
-1	$2^{-1}=\frac{1}{2^{1}}=\frac{1}{2}$			
0	$2^{0}=1$			
1	$2^{1}=2$			
2	$2^{2}=4$	\quad	x	y
:---:	:---:			
-2	$3^{-2}=\frac{1}{3^{2}}=\frac{1}{9}$			
-1	$3^{-1}=\frac{1}{3^{1}}=\frac{1}{3}$			
0	$3^{0}=1$			
1	$3^{1}=3$			
2	$3^{2}=9$			

In Class Work

3. By plotting a few points, sketch the graphs of
(a) $y=2^{x}$
(b) $y=3^{x}$

Note: As long as $b>1$, the graph of b^{x} will be increasing, and concave up.

In Class Work

4. If $b>0$, what is the domain of $f(x)=b^{x}$? How about the range?

Remember:

- the domain is the set of inputs - what x does it make sense to plug in;
- the range is the set of outputs - what values of $f(x)$ will you get out, if you plug in all possible values of x ?
(a) As long as $b>0, b^{\times}$makes sense for all possible values of x, so the domain is all real numbers, or the interval $(-\infty, \infty)$.
(b) As long as $b>0, b^{\times}$will also be positive. We can get any value out, by choosing an appropriate value of x. Thus the range is all positive numbers, or $(0, \infty)$.

Recall:

A logarithm function with base b is denoted

$$
f(x)=\log _{b}(x)
$$

and is defined by $y=\log _{b}(x)$ iff $b^{y}=x$.

Inverse Functions

- Two functions are inverses of each other if
- For all $x \in$ the domain of $g, f(g(x))=x$ and
- For all $x \in$ the domain of $f, g(f(x))=x$

Inverse Functions

- Two functions are inverses of each other if
- For all $x \in$ the domain of $g, f(g(x))=x$ and
- For all $x \in$ the domain of $f, g(f(x))=x$
- Notation:

If f and g are inverses of each other, we write $g(x)=f^{-1}(x)$.

Inverse Functions

- Two functions are inverses of each other if
- For all $x \in$ the domain of $g, f(g(x))=x$ and
- For all $x \in$ the domain of $f, g(f(x))=x$
- Notation:

If f and g are inverses of each other, we write $g(x)=f^{-1}(x)$.

- Examples of Inverse Functions
- $f(x)=x^{2}$ for $x \geq 0 ; f^{-1}(x)=\sqrt{x}$
- $f(x)=2 x+5, f^{-1}(x)=\frac{x-5}{2}$

More on Inverse Functions:

- If a point (a, b) is on the graph of $f(x)$, then that means that $f(a)=b$.
- In turn, that must mean that $f^{-1}(b)=f^{-1}(f(a))=a$, so the point (b, a) is on the graph of $f^{-1}(x)$.
- This ends up meaning that the graph of f^{-1} is the same as the graph of f reflected across the line $y=x$.

Graphs of $\ln (x), \log _{3}(x)$, and $\log _{4}(x)$, along with those

 of $e^{x}, 3^{x}$, and 4^{x}

Notice:

- $f(x)=\log _{b}(x)$ always passes through the points $(b, 1)$ and $(1,0)$:

$$
\square=\log _{b}(b) \Leftrightarrow b^{\square}=b \Leftrightarrow \square=1
$$

Thus $(b, 1)$ is on the graph

$$
\square=\log _{b}(1) \Leftrightarrow b^{\square}=1 \Leftrightarrow \square=0
$$

Thus $(1,0)$ is on the graph

Notice:

- $f(x)=\log _{b}(x)$ always passes through the points $(b, 1)$ and $(1,0)$:

$$
\begin{array}{r}
\square=\log _{b}(b) \Leftrightarrow b^{\square}=b \Leftrightarrow \square=1 \\
\quad \text { Thus }(b, 1) \text { is on the graph } \\
\square=\log _{b}(1) \Leftrightarrow b^{\square}=1 \Leftrightarrow \square=0 \\
\text { Thus }(1,0) \text { is on the graph }
\end{array}
$$

- Logarithms are not defined at $x=0$:

$$
\square=\log _{b}(0) \Leftrightarrow b^{\square}=0
$$

Thus 0 is not in the domain of any logarithmic function

Also notice:

- Logarithms are not defined at negative numbers:
$\square=\log _{b}$ (negative number $\Leftrightarrow b^{\square}=$ negative number

Since b is positive, no matter what power you raise it to, b^{\square} will always be positive.

