Local Extrema:

- ► *Maximum*=A high point on a graph. Plural: *Maxima*
- Minimum=A low point on a graph. Plural: Minima
- Extremum= An extreme point on the graph that is, either a maximum or a minimum. Plural: Extrema
- Local = in a neighborhood (just like in English!)
- A local maximum is as high or higher than any point nearby –a "peak". A local minimum is as low or lower than any point nearby – a "valley".

Inflection Points

While extrema are where a curve changes direction, inflection points are where a curve changes from being bent upward to being bent downward, or vice versa.

Exponential Functions:

An exponential function has the form

 $f(x) = b^x$

where *b* is a *fixed* **positive** number, called the **base**.

Math 101-Calculus 1 (Sklensky)

In-Class Work

September 7, 2011 3 / 17

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ □ ● ● ● ●

Exponential Functions:

An exponential function has the form

$$f(x) = b^x$$

where *b* is a *fixed* **positive** number, called the **base**.

Examples: $g(x) = e^x$, $h(x) = 3^x$, and $k(x) = 4^x$ are all exponential functions.

Remember: e is an irrational number that shows up in many different places; like π it shows up enough that we give it's own name.

 $e \approx 2.71828...$

Math 101-Calculus 1 (Sklensky)

In-Class Work

September 7, 2011 3 / 17

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

In Class Work

- 1. (a) Is π^{x} an exponential function?
 - (b) Is x^2 an exponential function?
- 2. If $f(x) = b^x$, where b is any positive number,
 - (a) what is f(0)? (Your answer may be in terms of b)
 - (b) what is f(1)? (Your answer may be in terms of b)
- 3. By plotting a few points, sketch the graphs of

(a)
$$y = 2^x$$

(b) $y = 3^x$

- If b > 0, what is the domain of f(x) = b^x? How about the range? Remember:
 - ▶ the *domain* is the set of inputs what x does it make sense to plug in;
 - ► the range is the set of outputs what values of f(x) will you get out, if you plug in all possible values of x?

Math 101-Calculus 1 (Sklensky)

Solutions - In Class Work

- (a) Is π^x an exponential function? Yes: the base, π is a constant, while the exponent is a variable.
 (b) Is x² an exponential function? No: the base is a variable while the exponent is fixed. This is a *power* function.
- 2. If $f(x) = b^x$, where b is any positive number,

(a) what is
$$f(0)$$
?

 $f(0) = b^0 = 1.$

Conclusion: The point (0, 1) is on *every* exponential function.

(b) what is
$$f(1)$$
?

$$f(1)=b^1=b.$$

Conclusion: The graph of b^{\times} goes through the point (1, b).

Math 101-Calculus 1 (Sklensky)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Solutions - In Class Work

3. By plotting a few points, sketch the graphs of

(a)
$$y = 2^x$$

(b) $y = 3^x$

< □ > < ---->

Math 101-Calculus 1 (Sklensky)

In-Class Work

-September 7, 2011 6 / 17

3

In Class Work

3. By plotting a few points, sketch the graphs of
(a) y = 2^x
(b) y = 3^x

Note: As long as b > 1, the graph of b^{\times} will be increasing, and concave up.

Math 101-Calculus 1 (Sklensky)

In-Class Work

September 7, 2011 7 / 17

In Class Work

- If b > 0, what is the domain of f(x) = b^x? How about the range? Remember:
 - ▶ the *domain* is the set of inputs what x does it make sense to plug in;
 - ► the range is the set of outputs what values of f(x) will you get out, if you plug in all possible values of x?

- (a) As long as b > 0, b^x makes sense for all possible values of x, so the domain is all real numbers, or the interval (-∞,∞).
- (b) As long as b > 0, b^x will also be positive. We can get any value out, by choosing an appropriate value of x. Thus the range is all positive numbers, or (0,∞).

ヘロン 人間と ヘヨン ヘヨン

Recall:

A logarithm function with base b is denoted

$$f(x) = \log_b(x)$$

and is defined by $y = \log_b(x)$ iff $b^y = x$.

Math 101-Calculus 1 (Sklensky)

In-Class Work

September 7, 2011 9 / 17

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 - のへ⊙

Inverse Functions

Two functions are inverses of each other if

- For all x ∈ the domain of g, f(g(x)) = x and
- For all $x \in$ the domain of f, g(f(x)) = x

Inverse Functions

Two functions are inverses of each other if

- For all x ∈ the domain of g, f(g(x)) = x and
- For all $x \in$ the domain of f, g(f(x)) = x

Notation:

If f and g are inverses of each other, we write $g(x) = f^{-1}(x)$.

Inverse Functions

Two functions are inverses of each other if

- For all x ∈ the domain of g, f(g(x)) = x and
- For all $x \in$ the domain of f, g(f(x)) = x

Notation:

If f and g are inverses of each other, we write $g(x) = f^{-1}(x)$.

Examples of Inverse Functions

▶
$$f(x) = x^2$$
 for $x \ge 0$; $f^{-1}(x) = \sqrt{x}$
▶ $f(x) = 2x + 5$, $f^{-1}(x) = \frac{x-5}{2}$

Math 101-Calculus 1 (Sklensky)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三日 うらぐ

September 7, 2011

10 / 17

More on Inverse Functions:

- If a point (a, b) is on the graph of f(x), then that means that f(a) = b.
- In turn, that must mean that f⁻¹(b) = f⁻¹(f(a)) = a, so the point (b, a) is on the graph of f⁻¹(x).
- ► This ends up meaning that the graph of f⁻¹ is the same as the graph of f reflected across the line y = x.

Graphs of ln(x), $log_3(x)$, and $log_4(x)$, along with those of e^x , 3^x , and 4^x

Notice:

• $f(x) = \log_b(x)$ always passes through the points (b, 1) and (1, 0):

$$\Box = \log_b(b) \Leftrightarrow b^{\Box} = b \Leftrightarrow \Box = 1$$

Thus $(b, 1)$ is on the graph
$$\Box = \log_b(1) \Leftrightarrow b^{\Box} = 1 \Leftrightarrow \Box = 0$$

Thus $(1, 0)$ is on the graph

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - わんで

In-Class Work

Math 101-Calculus 1 (Sklensky)

Notice:

• $f(x) = \log_b(x)$ always passes through the points (b, 1) and (1, 0):

$$\Box = \log_b(b) \Leftrightarrow b^{\Box} = b \Leftrightarrow \Box = 1$$

Thus $(b, 1)$ is on the graph
$$\Box = \log_b(1) \Leftrightarrow b^{\Box} = 1 \Leftrightarrow \Box = 0$$

Thus $(1, 0)$ is on the graph

• Logarithms are not defined at x = 0:

 $\Box = \log_b(0) \Leftrightarrow b^\Box = 0$ Thus 0 is not in the domain of any logarithmic function

Math 101-Calculus 1 (Sklensky)

In-Class Work

September 7, 2011 13 / 17

Also notice:

Logarithms are not defined at negative numbers:

 $\Box = \log_b(\text{negative number} \Leftrightarrow b^{\Box} = \text{ negative number}$

Since *b* is positive, no matter what power you raise it to, b^{\Box} will always be positive.

Math 101-Calculus 1 (Sklensky)

In-Class Work

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨー つくで

September 7, 2011 14 / 17