Graphs of $\ln (x), \log _{3}(x)$, and $\log _{4}(x)$, along with those of $e^{x}, 3^{x}$, and 4^{x}

- The logarithm is defined in terms of exponential functions. $\log _{b} x$ is defined to be the power you raise b to, to get x. That is, if $x>0$,

$$
y=\log _{b} x \Leftrightarrow b^{y}=x
$$

- Compare that to: squaring vs square roots.
- The square root is defined in terms of squaring.
\sqrt{x} is defined to be the non-negative number you square, to get x. That is, if $x \geq 0$,

$$
y=\sqrt{x} \Leftrightarrow y^{2}=x .
$$

- The logarithm is defined in terms of exponential functions. $\log _{b} x$ is defined to be the power you raise b to, to get x. That is, if $x>0$,

$$
y=\log _{b} x \Leftrightarrow b^{y}=x
$$

- Compare that to: squaring vs square roots.
- The square root is defined in terms of squaring.
\sqrt{x} is defined to be the non-negative number you square, to get x.
That is, if $x \geq 0$,

$$
y=\sqrt{x} \Leftrightarrow y^{2}=x .
$$

- The square root function is (more or less) the inverse of the squaring function: it undoes what the square does, and square undoes what the square root undoes.
- The logarithm is defined in terms of exponential functions. $\log _{b} x$ is defined to be the power you raise b to, to get x. That is, if $x>0$,

$$
y=\log _{b} x \Leftrightarrow b^{y}=x
$$

- Compare that to: squaring vs square roots.
- The square root is defined in terms of squaring.
\sqrt{x} is defined to be the non-negative number you square, to get x.
That is, if $x \geq 0$,

$$
y=\sqrt{x} \Leftrightarrow y^{2}=x .
$$

- The square root function is (more or less) the inverse of the squaring function: it undoes what the square does, and square undoes what the square root undoes.
- That is, If $x \geq 0, \sqrt{\left(x^{2}\right)}=x$ and $(\sqrt{x})^{2}=x$.
- In other words:

If $f(x)=\sqrt{x}$ and $g(x)=x^{2}$, then

$$
\text { if } x \geq 0, f(g(x))=x \text { and } g(f(x))=x
$$

Inverse Functions

- Two functions are inverses of each other if
- For all $x \in$ the domain of $g, f(g(x))=x$ and
- For all $x \in$ the domain of $f, g(f(x))=x$

Inverse Functions

- Two functions are inverses of each other if
- For all $x \in$ the domain of $g, f(g(x))=x$ and
- For all $x \in$ the domain of $f, g(f(x))=x$
- Notation:

If f and g are inverses of each other, we write $g(x)=f^{-1}(x)$.

- Examples of Inverse Functions
- $f(x)=x^{2}$ for $x \geq 0 ; f^{-1}(x)=\sqrt{x}$
- $f(x)=2 x+5, f^{-1}(x)=\frac{x-5}{2}$

More on Inverse Functions:

- If a point (a, b) is on the graph of $f(x)$, then that means that $f(a)=b$.

More on Inverse Functions:

- If a point (a, b) is on the graph of $f(x)$, then that means that $f(a)=b$.
- Taking f^{-1} of both sides of that equation, we get $f^{-1}(b)=f^{-1}(f(a))$. Since f and f^{-1} undo each other, this means $f^{-1}(b)=a$.

More on Inverse Functions:

- If a point (a, b) is on the graph of $f(x)$, then that means that $f(a)=b$.
- Taking f^{-1} of both sides of that equation, we get $f^{-1}(b)=f^{-1}(f(a))$. Since f and f^{-1} undo each other, this means $f^{-1}(b)=a$.
- Thus the point (b, a) is on the graph of $f^{-1}(x)$.
- This ends up meaning that the graph of f^{-1} is the same as the graph of f reflected across the line $y=x$.

Graphs of $\ln (x), \log _{3}(x)$, and $\log _{4}(x)$, along with those of $e^{x}, 3^{x}$, and 4^{x}

Notice:

- $f(x)=\log _{b}(x)$ always passes through the points $(b, 1)$ and $(1,0)$, since the points $(1, b)$ and $(0,1)$ are on the graph of b^{x}.

Notice:

- $f(x)=\log _{b}(x)$ always passes through the points $(b, 1)$ and $(1,0)$, since the points $(1, b)$ and $(0,1)$ are on the graph of b^{x}.
- Logarithms are not defined at $x=0$:

$$
\square=\log _{b}(0) \Leftrightarrow b^{\square}=0
$$

Thus 0 is not in the domain of any logarithmic function

Also notice:

- Logarithms are not defined at negative numbers:
$\square=\log _{b}$ (negative number) $\Leftrightarrow b^{\square}=$ negative number

Since b is positive, no matter what power you raise it to, b^{\square} will always be positive.

Recall:

- Most important $\log =$ logarithm base e and is denoted

$$
\ln (x)=\log _{e}(x)
$$

- Called the natural logarithm
- Later in the semester, we'll see why this is so important.

Algebra of Expontials and Logs

$$
\begin{array}{ccc}
b^{-k}=\frac{1}{b^{k}} & b^{\frac{1}{k}}=\sqrt[k]{b} & b^{0}=1 \\
b^{\times} b^{y}=b^{x+y} & \left(b^{x}\right)^{y}=b^{x y} &
\end{array}
$$

$\log _{b}(x y)=\log _{b}(x)+\log _{b}(y) \quad \log _{b}\left(x^{k}\right)=k \log _{b}(x) \quad \log _{b}(1)=0$ $\log _{b}\left(b^{\times}\right)=x$ $b^{\log _{b}(x)}=x$

In Class Work

1. Solve $3^{4 x-7}=10$ for x.
2. Solve $3^{4 x-7}=10^{2 x+5}$ for x
3. Find a function of the form $a e^{b x}$ which goes through the points $(0,2)$ and $(2,6)$.

Solutions to In Class Work

1. Solve $3^{4 x-7}=10$ for x.

$$
\begin{aligned}
3^{4 x-7} & =10 \\
\ln \left(3^{4 x-7}\right) & =\ln 10 \\
(4 x-7) \ln 3 & =\ln 10 \\
4 x-7 & =\frac{\ln 10}{\ln 3} \\
4 x & =7+\frac{\ln 10}{\ln 3} \\
x & =\frac{1}{4}\left(7+\frac{\ln 10}{\ln 3}\right)
\end{aligned}
$$

Solutions to In Class Work

2. Solve $3^{4 x-7}=10^{2 x+5}$ for x

$$
\begin{aligned}
3^{4 x-7} & =10^{2 x+5} \\
(4 x-7) \ln 3 & =(2 x+5) \ln 10 \\
4(\ln 3) x-7 \ln 3 & =2(\ln 10) x+5 \ln 10 \\
(4 \ln 3-2 \ln 10) x & =5 \ln 10+7 \ln 3 \\
x & =\frac{5 \ln 10+7 \ln 3}{4 \ln 3-2 \ln 10}
\end{aligned}
$$

Solutions to In Class Work

3. Find a function of the form $a e^{b x}$ which goes through the points $(0,2)$ and $(2,6)$.
$(0,2)$ on the graph $\Longrightarrow f(0)=2$.
That is, $2=f(0)=a e^{b \cdot 0}=a e^{0}=a$.
$a=2 \Rightarrow f(x)=2 e^{b x}$.
We still need to find b.
$(2,6)$ on the graph $\Longrightarrow f(2)=6$.
That is, $6=f(2)=2 e^{2 b}$.
We need to solve for b.

$$
\begin{aligned}
6 & =2 e^{2 b} \Longrightarrow 3=e^{2 b} \\
\ln (3) & =2 b\left(\text { because } \ln (x) \text { and } e^{x} \text { are inverses, so } \ln \left(e^{2 b}\right)=2 b\right) \\
\frac{\ln (3)}{2} & =b \Longrightarrow f(x)=2 e^{\frac{x}{2} \ln (3)}
\end{aligned}
$$

