Basic Building Block Functions:

polynomial

$\tan (x)$

$\cos (x)$

e^{x}

$\sin (x)$

$\ln (x)$

Addition of Functions

$\cos (x), x^{2}, \cos (x)+x^{2}$

Subtraction of Functions

$\cos (x), x^{2}, \cos (x)-x^{2}$

Multiplication of Functions

$\cos (x), x^{2}, x^{2} \cos (x)$

Division of Functions
 $\cos (x), x^{2}, \frac{\cos (x)}{x^{2}}$

Vertical Translation

$2 x^{3},-5,2 x^{3}-5$

Horizontal Translation

$\cos (x), \cos (x+\pi / 2)$

Vertical Stretching

$3^{x}, 2 \cdot 3^{x}$ (which is not the same as 6^{x})

In Class Work

1. Given $f(x)=2^{x}, g(x)=\cos (x)$, and $h(x)=x^{3}-2 x$, find:
(a) $f \circ g(x)$
(c) $h \circ g(x)$
(b) $f \circ h(x)$
(d) $f \circ g \circ h(x)$
2. The functions below define $f(x)$ and $g(x)$. Find $f \circ g(-3)$.

3. Let $f(x)=x^{2}$. In each case, sketch all listed functions on the same set of axes.
(a) $f(x), f(x)+2$, and $f(x)-3$
(b) $f(x), f(x+2)$, and $f(x-3)$
(c) $f(x), 2 f(x),-3 f(x)$, and $\frac{1}{2} f(x)$

Solutions to In Class Work

1. Given $f(x)=2^{x}, g(x)=\cos (x)$, and $h(x)=x^{3}-2 x$, find:
(a) $f \circ g(x)$

$$
f \circ g(x)=f(g(x))=f(\cos (x))=2^{\cos (x)}
$$

(b) $f \circ h(x)$

$$
f \circ h(x)=f(h(x))=f\left(x^{3}-2 x\right)=2^{x^{3}-2 x} .
$$

(c) $h \circ g(x)$

$$
h \circ g(x)=h(g(x))=h(\cos (x))=(\cos (x))^{3}-2 \cos (x)
$$

(d) $f \circ g \circ h(x)$

$$
\begin{aligned}
f \circ g \circ h(x) & =f(g(h(x)))=f\left(g\left(x^{3}-2 x\right)\right)=f\left(\cos \left(x^{3}-2 x\right)\right) \\
& =2^{\cos \left(x^{3}-2 x\right)} .
\end{aligned}
$$

In Class Work

2. The functions below define $f(x)$ and $g(x)$. Find $f \circ g(-3)$.

- $f \circ g(-3)=f(g(-3))$.
- From the graph of $g(x), g(-3)=3$.
- Thus $f \circ g(-3)=f(g(-3))=f(3)$
- From the graph of $f(x), f(3)=2$.
- Thus $f \circ g(-3)=2$.

In Class Work

3. Let $f(x)=x^{2}$. In each case, sketch all listed functions on the same set of axes.
(a) $f(x), f(x)+2$, and $f(x)-3$

In Class Work

3. Let $f(x)=x^{2}$. In each case, sketch all listed functions on the same set of axes.
(b) $f(x), f(x+2)$, and $f(x-3)$

In Class Work

3. Let $f(x)=x^{2}$. In each case, sketch all listed functions on the same set of axes.
(c) $f(x), 2 f(x),-3 f(x)$, and

In Class Practice

1. Find the compositions $f \circ g(x)$ and $g \circ f(x)$ if $f(x)=x^{2}+x$ and $g(x)=\sin (x)$.
2. Identify functions $f(x)$ and $g(x)$ such that $\sqrt{(x-2)^{4}+3}$ is $f \circ g(x)$.
3. Use the graph below to sketch the graph of $3 f(x)+5$

Solutions:

3. Find the compositions $f \circ g(x)$ and $g \circ f(x)$ if $f(x)=x^{2}+x$ and $g(x)=\sin (x)$.
(a) $f \circ g(x)=f(g(x))=f(\sin (x))=\sin ^{2}(x)+\sin (x)$
(b) $g \circ f(x)=g(f(x))=g\left(x^{2}+x\right)=\sin \left(x^{2}+x\right)$
4. Identify functions $f(x)$ and $g(x)$ such that $\sqrt{(x-2)^{4}+3}$ is $f \circ g(x)$.

- One possibility: $g(x)=x-2, f(x)=\sqrt{x^{4}+3}$
- Another possibiity: $g(x)=(x-2)^{4}, f(x)=\sqrt{x+3}$
- Yet another possibility: $g(x)=(x-2)^{4}+3, f(x)=\sqrt{x}$.

Solutions:

5. Use the graph below to sketch the graph of $3 f(x)+5$

