Remember:

- The IVT: Let f be a continuous function on $[a, b]$ and let y be between $f(a)$ and $f(b)$. Then there exists a number c between $x=a$ and $x=b$ such that $f(c)=y$.
- The MVT: Let f be a differentiable function on $[a, b]$ Then there exists a number c between $x=a$ and $x=b$ such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

1. Draw the graph of a function f where f does not satisfy the conclusion of the IVT on the interval $[-1,1]$. What is the value of y where the IVT fails?
2. Draw the graph of a function f where f does not satisfy the hypotheses of the IVT on the interval $[-1,1]$, but does satisfy the conclusion of the IVT on $[-1,1]$.
3. Draw the graph of a function f where f does not satisfy the conclusion of the MVT on the interval $[-1,1]$.
4. Draw the graph of a function f where f does not satisfy the hypotheses of the MVT on the interval $[-1,1]$, but does satisfy the conclusion of the MVT on $[-1,1]$.

Using only what we know so far - that the integral is the signed area between the graph and the x-axis, evaluate the following integrals.

1. $\int_{0}^{4} 2 x d x$
2. $\int_{-1}^{0} 2 x d x$
3. $\int_{-1}^{4} 2 x d x$
4. $\int_{-1}^{1} x^{3} d x$
5. $\int_{0}^{\pi} \cos (x) d x$
6. $\int_{2}^{0} x+2 d x$
