Things to investigate When Graphing a Function

- Critical Numbers: Find the critical numbers of f
- Increasing/Decreasing: On each interval determined by the critical numbers and the points not in the domain of f, find if f is \uparrow or \downarrow
- Local Extrema: Conclude where there are local mins and max's
- Potential inflection points: Find critical numbers of f^{\prime}
- Concavity: On intervals to each side of points where $f^{\prime \prime}(x)=0$ or d.n.e., find whether f is \smile or \frown. If the concavity changes at a point where f exists, f has an infl pt there: if f^{\prime} d.n.e, it's an infl pt w/a vert tangent, if $f^{\prime}(x)=0$, then it's an infl pt $\mathrm{w} /$ a hor tangent. continued...

Things to investigate When Graphing a Function

- Domain - are there any points or intervals not in the domain of f ?
- Vertical asymptotes - If a is an isolated point not in the domain (not an interval), is there a vertical asymptote at a, or is it a removable discontinuity? Find $\lim _{x \rightarrow a^{+}} f(x)$ and $\lim _{x \rightarrow a^{-}} f(x)$
- Critical Numbers: Find the critical numbers of f
- Increasing/Decreasing: On each interval determined by the critical numbers and the points not in the domain of f, find if f is \uparrow or \downarrow
- Local Extrema: Conclude where there are local mins and max's
- Potential inflection points: Find critical numbers of f^{\prime}
- Concavity: On intervals to each side of points where $f^{\prime \prime}(x)=0$ or d.n.e., find whether f is \smile or \frown. If the concavity changes at a point where f exists, f has an infl pt there: if f^{\prime} d.n.e, it's an infl pt w/a vert tangent, if $f^{\prime}(x)=0$, then it's an infl pt $\mathrm{w} /$ a hor tangent. continued...

More things to investigate

- Horizontal Asymptotes: Check the limit of $f(x)$ as $x \rightarrow \pm \infty$. If either limit is finite, you have a horizontal asymptote on that side. Polynomials and roots do not have horizontal asymptotes. A function is most likely to have a horizontal asymptote if it involves an exponential function or is a quotient of two functions.
- A few key points: Find the y-values of all the points you've identified as important. Find the y-intercept, and if it's not too painful, find the x-intercepts as well.

In Class Work

Graph the following functions, in either order, without looking at the graph on a calculator. Find all asymptotes, local extrema, and inflection points.

1. $f(x)=\ln \left(x^{2}-4\right)$
2. $g(x)=e^{1 / x}$

Solution: Graphing $f(x)=\ln \left(x^{2}-4\right)$

- Domain:

$$
x^{2}-4>0 \Rightarrow x^{2}>4 \Rightarrow x<-2 \text { or } x>2
$$

- Vertical Asympotes at $x= \pm 2$?

Remembering from the graph of $\ln (x)$ that $\lim _{x \rightarrow 0^{+}} \ln (x)=-\infty$,

$$
\begin{aligned}
& \text { As } \quad x \rightarrow 2^{+}, \quad x^{2}-4 \rightarrow 0^{+} \Rightarrow \ln \left(x^{2}-4\right) \rightarrow-\infty \\
& \text { As } \quad x \rightarrow-2^{-}, \quad x^{2}-4 \rightarrow 0^{+} \Rightarrow \ln \left(x^{2}-4\right) \rightarrow-\infty
\end{aligned}
$$

- Horizontal Asymptotes?

As $x \rightarrow \infty, \ln (x) \rightarrow \infty$ (slowly), so $\lim _{x \rightarrow \pm \infty} \ln \left(x^{2}-4\right) \rightarrow \infty$

Solution: Graphing $f(x)=\ln \left(x^{2}-4\right)$

- Domain: All $x<-2$ or $x>2$
- Vertical Asympotes at $x= \pm 2$: As $x \rightarrow 2^{+},-2^{-}, f(x) \rightarrow-\infty$
- Horizontal Asymptotes? No, as $x \rightarrow \pm \infty, f(x) \rightarrow \infty$
- Critical Points: Find where $f^{\prime}(x)=0$ or d.n.e. but f does

$$
\begin{gathered}
f^{\prime}(x)=\frac{1}{x^{2}-4} \cdot 2 x=\frac{2 x}{x^{2}-4} \\
f^{\prime}(x)=0 \Leftrightarrow \frac{2 x}{x^{2}-4}=0 \Leftrightarrow x=0
\end{gathered}
$$

But $x \notin$ domain of $\ln \left(x^{2}-4\right)$, so $f(x)$ has no local extrema.

Solution: Graphing $f(x)=\ln \left(x^{2}-4\right)$

- Domain: All $x<-2$ or $x>2$
- Vertical Asympotes at $x= \pm 2$: As $x \rightarrow 2^{+},-2^{-}, f(x) \rightarrow-\infty$
- Horizontal Asymptotes? No, as $x \rightarrow \pm \infty, f(x) \rightarrow \infty$
- Critical Points: f has no local extrema
- Increasing/Decreasing: Find where $f^{\prime}(x)$ positive, negative. Can only change at critical points or points where f d.n.e.
- To the left of $x=-2: f^{\prime}(-3)=\frac{2 \cdot(-3)}{(-3)^{2}-4}<0$.

Conclusion: f is decreasing on $(-\infty,-2)$

- To the right of $x=2: f(3)=\frac{2 \cdot 3}{3^{2}-4}>0$.

Conclusion: f is increasing on $(2, \infty)$

Solution: Graphing $f(x)=\ln \left(x^{2}-4\right)$

- Domain: All $x<-2$ or $x>2$
- Vertical Asympotes at $x= \pm 2$: As $x \rightarrow 2^{+},-2^{-}, f(x) \rightarrow-\infty$
- Horizontal Asymptotes? No, as $x \rightarrow \pm \infty, f(x) \rightarrow \infty$
- Critical Points: f has no local extrema
- Increasing/Decreasing: $f \downarrow$ on $(-\infty,-2), f \uparrow$ on $(2, \infty)$
- Possible Inflection Points: Where $f^{\prime \prime}(x)=0$ or d.n.e. but f does

$$
f^{\prime}(x)=\frac{2 x}{x^{2}-4} \Rightarrow f^{\prime \prime}(x)=\frac{\left(x^{2}-4\right) \cdot 2-(2 x) \cdot(2 x)}{\left(x^{2}-4\right)^{2}}=\frac{-2\left(x^{2}+4\right)}{\left(x^{2}-4\right)^{2}}
$$

There are no values of x at which $f^{\prime \prime}(x)=0$. $f^{\prime \prime}(x)$ only d.n.e. at $x= \pm 2$, which aren't in domain. Thus $f(x)$ has no inflection points.

Solution: Graphing $f(x)=\ln \left(x^{2}-4\right)$

- Domain: All $x<-2$ or $x>2$
- Vertical Asympotes at $x= \pm 2$: As $x \rightarrow 2^{+},-2^{-}, f(x) \rightarrow-\infty$
- Horizontal Asymptotes? No, as $x \rightarrow \pm \infty, f(x) \rightarrow \infty$
- Critical Points: f has no local extrema
- Increasing/Decreasing: $f \downarrow$ on $(-\infty,-2), f \uparrow$ on $(2, \infty)$
- Possible Inflection Points: $f(x)$ has no inflection points
- Concavity: Find where $f^{\prime \prime}(x)$ positive, negative. Can only change at possible inflection points or where f or f^{\prime} d.n.e.
- To the left of $x=-2: f^{\prime \prime}(-3)=\frac{-2\left((-3)^{2}+4\right)}{\left((-3)^{2}-4\right)^{2}}<0$

Conclusion: f is concave down on $(-\infty, 2)$

- To the right of $x=2: f^{\prime \prime}(3)=\frac{-2\left(3^{2}+4\right)}{\left((3)^{2}-4\right)^{2}}<0$

Conclusion: f is concave down on $(2, \infty)$

Solution: Graphing $f(x)=\ln \left(x^{2}-4\right)$

- Domain: All $x<-2$ or $x>2$
- Vertical Asympotes at $x= \pm 2$: As $x \rightarrow 2^{+},-2^{-}, f(x) \rightarrow-\infty$
- Horizontal Asymptotes? No, as $x \rightarrow \pm \infty, f(x) \rightarrow \infty$
- Critical Points: f has no local extrema
- Increasing/Decreasing: $f \downarrow$ on $(-\infty,-2), f \uparrow$ on $(2, \infty)$
- Possible Inflection Points: $f(x)$ has no inflection points
- Concavity: f is \frown on $(-\infty, 2)$ and on $(2, \infty)$
- Important points: We have no inflection points, no local extrema, and no y-intercept, but we should still find a few y-values.
- x-intercepts:

$$
f(x)=0 \Leftrightarrow \ln \left(x^{2}-4\right)=0 \Leftrightarrow x^{2}-4=1 \Leftrightarrow x^{2}=5 \Leftrightarrow x= \pm \sqrt{5} \approx \pm 2.24
$$

Solution: Graphing $f(x)=\ln \left(x^{2}-4\right)$

- Domain:

$$
\text { All } x<-2 \text { or } x>2
$$

- Vertical Asympotes: As $x \rightarrow 2^{+},-2^{-}, f(x) \rightarrow-\infty$
- Horizontal Asymptotes? None. As $x \rightarrow \pm \infty$, $f(x) \rightarrow \infty$
- Local Extrema: None
- Increasing/Decreasing: $f \downarrow$ on $(-\infty,-2), f \uparrow$ on $(2, \infty)$

- Inflection Points: None
- Concavity:

$$
f \text { is } \frown \text { on }(-\infty, 2),(2, \infty)
$$

- Important points: $(\pm \sqrt{5}, 0)$

Solution: Graphing $g(x)=e^{1 / x}$

- Domain:

$$
\frac{1}{x} \text { d.n.e. at } x=0 \Rightarrow \text { Domain: All } x \neq 0
$$

- Vertical Asympotes at $x=0$?

Remembering from the graph of e^{x} that $\lim _{x \rightarrow \infty} e^{x}=\infty, \lim _{x \rightarrow-\infty} e^{x}=0$,

$$
\begin{aligned}
& \text { As } \quad x \rightarrow 0^{+}, \frac{1}{x} \rightarrow \infty \Rightarrow e^{1 / x} \rightarrow \infty \\
& \text { As } \quad x \rightarrow 0^{-}, \frac{1}{x} \rightarrow-\infty \Rightarrow e^{1 / x} \rightarrow 0
\end{aligned}
$$

- Horizontal Asymptotes?

As $x \rightarrow \pm \infty, \frac{1}{x} \rightarrow 0$, so $\lim _{x \rightarrow \pm \infty} e^{1 / x} \rightarrow e^{0}=1$

Solution: Graphing $g(x)=e^{1 / x}$

- Domain: All $x \neq 0$
- Vertical Asympotes: $\lim _{x \rightarrow 0^{+}} g(x)=\infty, \lim _{x \rightarrow 0^{-}} g(x)=0$
- Horizontal Asymptotes? As $x \rightarrow \pm \infty, g(x) \rightarrow 1$
- Critical Points: Find where $g^{\prime}(x)=0$ or d.n.e. but g does

$$
g^{\prime}(x)=e^{1 / x} \cdot-\frac{1}{x^{2}}=-\frac{e^{1 / x}}{x^{2}} \neq 0 \text { for any } x
$$

Also, only point where $g^{\prime}(x)$ d.n.e. is $x=0$, not in domain of g. Conclusion: $g(x)$ has no local extrema

- Increasing/Decreasing: Find where $g^{\prime}(x)$ positive, negative. Can only change at critical points or points where g d.n.e.

$$
g^{\prime}(x)=-\frac{e^{1 / x}}{x^{2}}<0 \text { for all } x \neq 0
$$

Thus g decreases everywhere on its domain.

Solution: Graphing $g(x)=e^{1 / x}$

- Domain: All $x \neq 0$
- Vertical Asympotes $\lim _{x \rightarrow 0^{+}} g(x)=\infty, \lim _{x \rightarrow 0^{-}} g(x)=0$
- Horizontal Asymptotes? As $x \rightarrow \pm \infty, g(x) \rightarrow 1$
- Critical Points: g has no local extrema
- Increasing/Decreasing: g decreases for all $x \neq 0$
- Possible Inflection Points: Where $g^{\prime \prime}(x)=0$ or d.n.e. but g does

$$
\begin{aligned}
g^{\prime}(x)=-\frac{e^{1 / x}}{x^{2}} \Rightarrow g^{\prime \prime}(x) & =-\left(\frac{x^{2} \cdot\left(e^{1 / x} \cdot-\frac{1}{x^{2}}\right)-e^{1 / x} \cdot 2 x}{\left(x^{2}\right)^{2}}\right) \\
& =-\frac{-e^{1 / x}-2 x e^{1 / x}}{x^{4}}=\frac{(2 x+1) e^{1 / x}}{x^{4}} \\
\Rightarrow g^{\prime \prime}(x)=0 & \Leftrightarrow 2 x+1=0 \Leftrightarrow x=-\frac{1}{2}
\end{aligned}
$$

Conclusion: Only point where g might have inflection point: $x=-\frac{1}{2}$

Solution: Graphing $g(x)=e^{1 / x}$

- Domain: All $x \neq 0$
- Vertical Asympotes $\lim _{x \rightarrow 0^{+}} g(x)=\infty, \lim _{x \rightarrow 0^{-}} g(x)=0$
- Horizontal Asymptotes? As $x \rightarrow \pm \infty, g(x) \rightarrow 1$
- Critical Points: g has no local extrema
- Increasing/Decreasing: g decreases for all $x \neq 0$
- Possible Inflection Points: At $x=-\frac{1}{2}$
- Concavity: Find where $g^{\prime \prime}(x)+/-$. May only change at $x=-\frac{1}{2}, 0$
- To the left of $x=-\frac{1}{2}: g^{\prime \prime}(-1)=\frac{e^{1 /(-1)}(1+2(-1))}{(-1)^{4}}=\frac{(+)(-)}{(+)}<0$ Conclusion: g is concave down on $\left(-\infty,-\frac{1}{2}\right)$
- Btwn $x=-\frac{1}{2}$ and $x=0: g^{\prime \prime}\left(-\frac{1}{4}\right)=\frac{e^{-4}\left(1+2\left(-\frac{1}{4}\right)\right)}{\left(-\frac{1}{4}\right)^{4}}=\frac{(+)(+)}{(+)}>0$

Conclusion: g is concave up on $\left(-\frac{1}{4}, 0\right)$

- To the right of $x=0: g^{\prime \prime}(1)=\frac{e^{1}(1+2(1))}{(1)^{2}}>0$

Conclusion: g is concave up on $(1, \infty)$

Solution: Graphing $g(x)=e^{1 / x}$

- Domain: All $x \neq 0$
- Vertical Asympotes $\lim _{x \rightarrow 0^{+}} g(x)=\infty, \lim _{x \rightarrow 0^{-}} g(x)=0$
- Horizontal Asymptotes? As $x \rightarrow \pm \infty, g(x) \rightarrow 1$
- Critical Points: g has no local extrema
- Increasing/Decreasing: g decreases for all $x \neq 0$
- Possible Inflection Points: At $x=-\frac{1}{2}$
- Concavity: g is \frown on $\left(-\infty,-\frac{1}{2}\right)$, \smile on $\left(-\frac{1}{2}, 0\right) \cup(0, \infty)$
- Important points: We have no local extrema and not exactly a y-intercept
- Inflection point: $g\left(-\frac{1}{2}\right)=e^{-2} \approx 0.14$
- x-intercepts: $g(x)=0 \Leftrightarrow e^{\frac{1 / x}{=}} 0$: Impossible, so no x-intercepts
- One point to right of $x=0: g(1)=e^{1} \approx 2.72$
- Can g cross $y=1$? No, because it's always decreasing. If it crosses it and then becomes asymptotic to it, it would have to change direction.

Solution: Graphing $g(x)=e^{1 / x}$

- Domain:

All $x \neq 0$

- Vertical Asympotes:
$\lim _{x \rightarrow 0^{+}} g(x)=\infty, \lim _{x \rightarrow 0^{-}} g(x)=0$
- Horizontal Asymptotes? As $x \rightarrow \pm \infty, g(x) \rightarrow 1$
- Local Extrema: None

On [$-10,10]$:

On $[-5,5]$:

