#### Things to investigate When Graphing a Function

- Critical Numbers: Find the critical numbers of f
- Increasing/Decreasing: On each interval determined by the critical numbers and the points not in the domain of f, find if f is ↑ or ↓
- Local Extrema: Conclude where there are local mins and max's
- Potential inflection points: Find critical numbers of f'
- Concavity: On intervals to each side of points where f''(x) = 0 or d.n.e., find whether f is ∽ or ∽. If the concavity changes at a point where f exists, f has an infl pt there: if f' d.n.e, it's an infl pt w/ a vert tangent, if f'(x) = 0, then it's an infl pt w/ a hor tangent. continued...

Math 101-Calculus 1 (Sklensky)

#### Things to investigate When Graphing a Function

- **Domain** are there any points or intervals *not* in the domain of *f*?
- ► Vertical asymptotes If a is an isolated point not in the domain (not an interval), is there a vertical asymptote at a, or is it a removable discontinuity? Find lim<sub>x→a<sup>+</sup></sub> f(x) and lim<sub>x→a<sup>-</sup></sub> f(x)
- Critical Numbers: Find the critical numbers of f
- Increasing/Decreasing: On each interval determined by the critical numbers and the points not in the domain of f, find if f is ↑ or ↓
- Local Extrema: Conclude where there are local mins and max's
- Potential inflection points: Find critical numbers of f'
- Concavity: On intervals to each side of points where f''(x) = 0 or d.n.e., find whether f is ∽ or ∽. If the concavity changes at a point where f exists, f has an infl pt there: if f' d.n.e, it's an infl pt w/ a vert tangent, if f'(x) = 0, then it's an infl pt w/ a hor tangent. continued...

Math 101-Calculus 1 (Sklensky)

#### More things to investigate

- Horizontal Asymptotes: Check the limit of f(x) as x → ±∞. If either limit is finite, you have a horizontal asymptote on that side. Polynomials and roots do not have horizontal asymptotes. A function is most likely to have a horizontal asymptote if it involves an exponential function or is a quotient of two functions.
- ► A few key points: Find the *y*-values of all the points you've identified as important. Find the *y*-intercept, and if it's not too painful, find the *x*-intercepts as well.

#### In Class Work

Graph the following functions, in either order, without looking at the graph on a calculator. Find all asymptotes, local extrema, and inflection points.

1. 
$$f(x) = \ln(x^2 - 4)$$

2.  $g(x) = e^{1/x}$ 

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Domain:

$$x^2 - 4 > 0 \Rightarrow x^2 > 4 \Rightarrow x < -2 \text{ or } x > 2.$$

► Vertical Asympotes at x = ±2? Remembering from the graph of ln(x) that lim<sub>x→0<sup>+</sup></sub> ln(x) = -∞,

As 
$$x \to 2^+$$
,  $x^2 - 4 \to 0^+ \Rightarrow \ln(x^2 - 4) \to -\infty$   
As  $x \to -2^-$ ,  $x^2 - 4 \to 0^+ \Rightarrow \ln(x^2 - 4) \to -\infty$ 

#### Horizontal Asymptotes?

As  $x \to \infty$ ,  $\ln(x) \to \infty$  (slowly), so  $\lim_{x \to \pm \infty} \ln(x^2 - 4) \to \infty$ 

Math 101-Calculus 1 (Sklensky)

- **Domain:** All x < -2 or x > 2
- ▶ Vertical Asympotes at  $x = \pm 2$ : As  $x \to 2^+, -2^-$ ,  $f(x) \to -\infty$
- ▶ Horizontal Asymptotes? No, as  $x \to \pm \infty$ ,  $f(x) \to \infty$
- Critical Points: Find where f'(x) = 0 or d.n.e. but f does

$$f'(x) = \frac{1}{x^2 - 4} \cdot 2x = \frac{2x}{x^2 - 4}.$$

$$f'(x) = 0 \Leftrightarrow \frac{2x}{x^2 - 4} = 0 \Leftrightarrow x = 0.$$

But  $x \notin$  domain of  $\ln(x^2 - 4)$ , so f(x) has no local extrema.

Math 101-Calculus 1 (Sklensky)

March 27, 2015 5 / 16

- **Domain:** All x < -2 or x > 2
- ▶ Vertical Asympttes at  $x = \pm 2$ : As  $x \to 2^+, -2^-$ ,  $f(x) \to -\infty$
- ▶ Horizontal Asymptotes? No, as  $x \to \pm \infty$ ,  $f(x) \to \infty$
- Critical Points: f has no local extrema
- Increasing/Decreasing: Find where f'(x) positive, negative. Can only change at critical points or points where f d.n.e.
  - To the left of x = -2: f'(-3) = (2 ⋅ (-3))/(-3)<sup>2</sup> 4 < 0. Conclusion: f is decreasing on (-∞, -2)
     To the right of x = 2: f(3) = (2 ⋅ 3)/(2 ⋅ 4) > 0. Conclusion: f is increasing on (2 ⋅ 3)/(-2 ⋅ 4) > 0.

Conclusion: f is increasing on  $(2,\infty)$ 

Math 101-Calculus 1 (Sklensky)

March 27, 2015 6 / 16

- **Domain:** All x < -2 or x > 2
- ▶ Vertical Asympotes at  $x = \pm 2$ : As  $x \to 2^+, -2^-$ ,  $f(x) \to -\infty$
- ▶ Horizontal Asymptotes? No, as  $x \to \pm \infty$ ,  $f(x) \to \infty$
- Critical Points: f has no local extrema
- ▶ Increasing/Decreasing:  $f \downarrow$  on  $(-\infty, -2)$ ,  $f \uparrow$  on  $(2, \infty)$
- ▶ **Possible Inflection Points:** Where f''(x) = 0 or d.n.e. but f does

$$f'(x) = \frac{2x}{x^2 - 4} \Rightarrow f''(x) = \frac{(x^2 - 4) \cdot 2 - (2x) \cdot (2x)}{(x^2 - 4)^2} = \frac{-2(x^2 + 4)}{(x^2 - 4)^2}$$

There are no values of x at which f''(x) = 0. f''(x) only d.n.e. at  $x = \pm 2$ , which aren't in domain. Thus f(x) has no inflection points.

Math 101-Calculus 1 (Sklensky)

- **Domain:** All x < -2 or x > 2
- ▶ Vertical Asympttes at  $x = \pm 2$ : As  $x \to 2^+, -2^-$ ,  $f(x) \to -\infty$
- ▶ Horizontal Asymptotes? No, as  $x \to \pm \infty$ ,  $f(x) \to \infty$
- Critical Points: f has no local extrema
- ▶ Increasing/Decreasing:  $f \downarrow$  on  $(-\infty, -2)$ ,  $f \uparrow$  on  $(2, \infty)$
- **Possible Inflection Points:** f(x) has no inflection points
- ► Concavity: Find where f''(x) positive, negative. Can only change at possible inflection points or where f or f' d.n.e.

 ► To the left of x = -2: f''(-3) = (-2((-3)<sup>2</sup> + 4))/(((-3)<sup>2</sup> - 4))<sup>2</sup> < 0 Conclusion: f is concave down on (-∞, 2)
 ► To the right of x = 2: f''(3) = (-2(3<sup>2</sup> + 4))/((3)<sup>2</sup> - 4)<sup>2</sup>) < 0 Conclusion: f is concave down on (2,∞)

Math 101-Calculus 1 (Sklensky)

March 27, 2015 8 / 16

- **Domain:** All x < -2 or x > 2
- ▶ Vertical Asympttes at  $x = \pm 2$ : As  $x \to 2^+, -2^-$ ,  $f(x) \to -\infty$
- ▶ Horizontal Asymptotes? No, as  $x \to \pm \infty$ ,  $f(x) \to \infty$
- Critical Points: f has no local extrema
- ▶ Increasing/Decreasing:  $f \downarrow$  on  $(-\infty, -2)$ ,  $f \uparrow$  on  $(2, \infty)$
- **Possible Inflection Points:** f(x) has no inflection points
- Concavity: f is  $\frown$  on  $(-\infty, 2)$  and on  $(2, \infty)$
- Important points: We have no inflection points, no local extrema, and no y-intercept, but we should still find a few y-values.
  - x-intercepts:

$$f(x) = 0 \Leftrightarrow \ln(x^2 - 4) = 0 \Leftrightarrow x^2 - 4 = 1 \Leftrightarrow x^2 = 5 \Leftrightarrow x = \pm\sqrt{5} \approx \pm 2.24$$

Math 101-Calculus 1 (Sklensky)

All x < -2 or x > 2

Vertical Asympotes:

As  $x 
ightarrow 2^+, -2^-$ ,  $f(x) 
ightarrow -\infty$ 

- ▶ Horizontal Asymptotes? None. As  $x \to \pm \infty$ ,  $f(x) \to \infty$
- Local Extrema: None
- ▶ Increasing/Decreasing:  $f \downarrow$  on  $(-\infty, -2)$ ,  $f \uparrow$  on  $(2, \infty)$
- Inflection Points: None
- Concavity:
  - f is  $\frown$  on  $(-\infty,2)$ , $(2,\infty)$
- Important points:  $(\pm\sqrt{5},0)$

Math 101-Calculus 1 (Sklensky)



(日) (同) (三) (三)

March 27, 2015 10 / 16

Domain:

$$\frac{1}{x}$$
 d.n.e. at  $x = 0 \Rightarrow$  Domain: All  $x \neq 0$ 

▶ Vertical Asymptoes at x = 0? Remembering from the graph of  $e^x$  that  $\lim_{x\to\infty} e^x = \infty$ ,  $\lim_{x\to-\infty} e^x = 0$ ,

As 
$$x \to 0^+$$
,  $\frac{1}{x} \to \infty \Rightarrow e^{1/x} \to \infty$   
As  $x \to 0^-$ ,  $\frac{1}{x} \to -\infty \Rightarrow e^{1/x} \to 0$ 

#### ► Horizontal Asymptotes? As $x \to \pm \infty$ , $\frac{1}{x} \to 0$ , so $\lim_{x \to \pm \infty} e^{1/x} \to e^0 = 1$

Math 101-Calculus 1 (Sklensky)

In-Class Work

March 27, 2015 11 / 16

- **Domain:** All  $x \neq 0$
- ▶ Vertical Asympotes:  $\lim_{x\to 0^+} g(x) = \infty$ ,  $\lim_{x\to 0^-} g(x) = 0$
- ▶ Horizontal Asymptotes? As  $x \to \pm \infty$ ,  $g(x) \to 1$
- Critical Points: Find where g'(x) = 0 or d.n.e. but g does

$$g'(x) = e^{1/x} \cdot -\frac{1}{x^2} = -\frac{e^{1/x}}{x^2} \neq 0$$
 for any  $x$ 

Also, only point where g'(x) d.n.e. is x = 0, not in domain of g. Conclusion: g(x) has no local extrema

Increasing/Decreasing: Find where g'(x) positive, negative. Can only change at critical points or points where g d.n.e.

$$g'(x) = -rac{e^{1/x}}{x^2} < 0$$
 for all  $x \neq 0$ 

Thus g decreases everywhere on its domain.

Math 101-Calculus 1 (Sklensky)

In-Class Work

- **Domain:** All  $x \neq 0$
- ▶ Vertical Asympttes  $\lim_{x\to 0^+} g(x) = \infty$ ,  $\lim_{x\to 0^-} g(x) = 0$
- ▶ Horizontal Asymptotes? As  $x \to \pm \infty$ ,  $g(x) \to 1$
- Critical Points: g has no local extrema
- Increasing/Decreasing: g decreases for all  $x \neq 0$
- ▶ **Possible Inflection Points:** Where g''(x) = 0 or d.n.e. but g does

$$g'(x) = -\frac{e^{1/x}}{x^2} \Rightarrow g''(x) = -\left(\frac{x^2 \cdot \left(e^{1/x} \cdot -\frac{1}{x^2}\right) - e^{1/x} \cdot 2x}{(x^2)^2}\right)$$
$$= -\frac{-e^{1/x} - 2xe^{1/x}}{x^4} = \frac{(2x+1)e^{1/x}}{x^4}$$
$$\Rightarrow g''(x) = 0 \quad \Leftrightarrow \quad 2x+1 = 0 \Leftrightarrow x = -\frac{1}{2}$$

Conclusion: Only point where g might have inflection point:  $x = -\frac{1}{2}$ Math 101-Calculus 1 (Sklensky) In-Class Work March 27, 2015 13/16

- **Domain:** All  $x \neq 0$
- ▶ Vertical Asympttes  $\lim_{x\to 0^+} g(x) = \infty$ ,  $\lim_{x\to 0^-} g(x) = 0$
- ▶ Horizontal Asymptotes? As  $x \to \pm \infty$ ,  $g(x) \to 1$
- Critical Points: g has no local extrema
- Increasing/Decreasing: g decreases for all  $x \neq 0$
- Possible Inflection Points: At  $x = -\frac{1}{2}$
- Concavity: Find where g''(x) + /-. May only change at  $x = -\frac{1}{2}$ , 0
  - ► To the left of  $x = -\frac{1}{2}$ :  $g''(-1) = \frac{e^{1/(-1)}(1+2(-1))}{(-1)^4} = \frac{(+)(-)}{(+)} < 0$ Conclusion: g is concave down on  $(-\infty, -\frac{1}{2})$
  - Btwn  $x = -\frac{1}{2}$  and x = 0:  $g''(-\frac{1}{4}) = \frac{e^{-4}(1+2(-\frac{1}{4}))}{(-\frac{1}{4})^4} = \frac{(+)(+)}{(+)} > 0$ Conclusion: g is concave up on  $(-\frac{1}{4}, 0)$
  - ► To the right of x = 0:  $g''(1) = \frac{e^1(1+2(1))}{(1)^2} > 0$ Conclusion: g is concave up on  $(1, \infty)$

Math 101-Calculus 1 (Sklensky)

March 27, 2015 14 / 16

- **Domain:** All  $x \neq 0$
- ► Vertical Asympttes  $\lim_{x\to 0^+} g(x) = \infty$ ,  $\lim_{x\to 0^-} g(x) = 0$
- ▶ Horizontal Asymptotes? As  $x \to \pm \infty$ ,  $g(x) \to 1$
- Critical Points: g has no local extrema
- Increasing/Decreasing: g decreases for all  $x \neq 0$
- Possible Inflection Points: At  $x = -\frac{1}{2}$
- ► Concavity: g is  $\frown$  on  $(-\infty, -\frac{1}{2})$ ,  $\smile$  on  $(-\frac{1}{2}, 0) \cup (0, \infty)$
- Important points: We have no local extrema and not exactly a y-intercept
  - Inflection point:  $g(-\frac{1}{2}) = e^{-2} \approx 0.14$
  - x-intercepts:  $g(x) = 0 \Leftrightarrow e^{\frac{1/x}{n}} 0$ : Impossible, so no x-intercepts
  - One point to right of x = 0:  $g(1) = e^1 \approx 2.72$
- Can g cross y = 1? No, because it's always decreasing. If it crosses it and then becomes asymptotic to it, it would have to change direction.

Math 101-Calculus 1 (Sklensky)

- Solution: Graphing  $g(x) = e^{1/x}$ Domain: On [-10, 10]: All  $x \neq 0$ Vertical Asympotes: 15  $\lim_{x\to 0^+} g(x) = \infty, \lim_{x\to 0^-} g(x) = 0$ 1.0 Horizontal Asymptotes? As  $x \to \pm \infty$ ,  $g(x) \to 1$ Local Extrema: None \_10 \_5 Increasing/Decreasing: On [-5, 5]: g decreases for all  $x \neq 0$ 2.0 • Inflection Points:  $x = -\frac{1}{2}$ Concavity:  $(-\infty, -\frac{1}{2}): \frown;$  $(-\frac{1}{2},0) \cup (0,\infty): \smile$ Important points:
  - Math 101-Calculus 1 (Sklensky)

 $\left(-\frac{1}{2}, 0.14\right), (1, 2.72)$ 

March 27, 2015 16 / 16

3

Sa Co