Determining Convergence - Important Reminders

Consider $I=\int_{a}^{\infty} f(x) d x$.

1. There is a huge distinction between $f(x)$ converging that is, $\lim _{x \rightarrow \infty} f(x)$ being finite - and $I=\int_{a}^{\infty} f(x) d x$ converging. Just because you can find $\lim _{x \rightarrow \infty} f(x)$, and it's a finite number, does not mean that $\int_{a}^{\infty} f(x) d x$ will be finite.
2. In fact, if $\lim _{x \rightarrow \infty} f(x)$ exists but is not $0, I$ diverges! No need to investigate any further.
3. If $\lim _{x \rightarrow \infty} f(x)=0, I$ may converge or it may diverge you must investigate further.

Determine whether each of the following improper integrals converges or diverges.

1. $\int_{2}^{\infty} \frac{1}{x^{3}+2} d x$
2. $\int_{5}^{\infty} \frac{1}{\sqrt{x}-2} d x$
3. $\int_{2}^{\infty} \frac{2}{\sqrt{x}+x^{2}} d x$
4. $\int_{0}^{\infty} \frac{2}{\sqrt{x}+x^{2}} d x$

Goals:

1. Is there any way to at least determine whether or not an improper integral I converges even if we cannot find an antiderivative?
2. Better yet, if we do determine that an improper integral I converges, is there a way to approximate the value of the integral I ?

Let $I=\int_{a}^{\infty} f(x) d x$.

Dealing with Goal 1:

1. If $f(x)$ is antidifferentiable, cope with I by taking the limit of proper definite integrals. This tells us whether I diverges or converges, and if so, what it converges to.
2. If $f(x)$ is not antidifferentiable, then we try to determine whether or not I converges by comparing it to an improper integral whose convergence or divergence we know:
(a) If I is less than or equal to a convergent improper integral (but greater than or equal to 0), it must converge also. If it is greater than a convergent improper integral, our comparison was useless.
(b) If I is greater than or equal to a (positive) divergent improper integral, then it must diverge also. If it is less than a divergent improper integral, our comparison was useless.

Still left to figure out: Goal 2

If the integrand of an improper integral is not antidifferentiable, and you've already determined the improper integral converges, how can you approximate what it converges to?

