Find the interval of convergence for the following power series:

1. $\sum_{j=0}^{\infty} \frac{x^{j}}{j!}$
2. $\sum_{n=0}^{\infty}(n+1)(x-3)^{n}$

Find power series expansions about $x_{0}=0$ for the following:

1. $f(x)=\sin (x)$
2. $f(x)=\cos (x)$

Hint: $\frac{d}{d x} \sin (x)=\cos (x)$
3. $\cos \left(x^{2}\right)$

Feel free to use the result from (b).
4. $\int \cos \left(x^{2}\right) d x$

Then approximate $\int_{0}^{1} \cos \left(x^{2}\right) d x$ accurate within 10^{-5}.

