Consider the sequence $\left\{\frac{5 k^{2}-42}{3 k^{2}+5}\right\}_{k=1}^{\infty}$. We want to know whether or not this sequence converges, and if so, what to.

Just to try to get a feel for what's going on with this sequence, let's look at the first several terms of this sequence.

k	$a_{k}=\frac{5 k^{2}-42}{3 k^{2}+5}$
1	$\frac{5 \cdot 1^{2}-42}{3 \cdot 1^{2}+5}=-\frac{37}{8}$
2	$\frac{5 \cdot 2^{2}-42}{3 \cdot 2^{2}+5}=-\frac{22}{17}$
3	$\frac{5 \cdot 3^{2}-42}{3 \cdot 3^{2}+5}=\frac{3}{32}$
4	$\frac{38}{53}$
5	$\frac{83}{80}$
6	$\frac{138}{113}$

Thus the sequence begins like

$$
\left\{-\frac{37}{8},-\frac{22}{17}, \frac{3}{32}, \frac{38}{53}, \frac{83}{80}, \frac{138}{113}, \ldots\right\}
$$

Do the following sequences converge or diverge?
If the sequence converges, find the limit.

1. $\left\{\frac{j^{2}+32 j}{e^{j}}\right\}_{j=3}^{\infty}$
2. $\left\{\frac{\sin (k)}{k^{2}}\right\}_{k=1}^{\infty}$

Example: $\sum_{k=0}^{\infty}\left(\frac{1}{2}\right)^{k}$ is a geometric series, with $r=\frac{1}{2}$.
The associated sequence of terms $\left\{a_{k}\right\}$ is

$$
\left\{\left(\frac{1}{2}\right)^{k}\right\}_{k=0}^{\infty}=\left\{1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \ldots\right\}
$$

The associated sequence of partial sums S_{n} is

$$
\begin{aligned}
&\left\{1,1+\frac{1}{2}, 1+\frac{1}{2}+\frac{1}{4}, 1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}\right. \\
&\left.1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}, \ldots\right\}=\left\{1, \frac{3}{2}, \frac{7}{4}, \frac{15}{8}, \frac{31}{16}, \ldots\right\}
\end{aligned}
$$

