Recall:

- 1. **Definition:** An alternating series is one whose terms alternate in sign. That is, a series of the form $c_1 c_2 + c_3 \cdots$ where c_i is positive.
- 2. Alternating Series Test: Consider the alternating series $c_1 c_2 + c_3 \cdots = \sum_{k=1}^{\infty} (-1)^{k+1} c_k$ where $c_k \ge 0$.

If $\lim_{k \to \infty} c_k = 0$, then the series converges.

If in addition $c_1 > c_2 > c_3 > \ldots$, then S lies between S_n and S_{n+1} for any n.

November 19, 2007

Sklensky

Determine whether the following series converge conditionally, converge absolutely, or diverge. For those that converge, find upper and lower bounds.

1.
$$\sum_{k=1}^{\infty} (-1)^{k+1} \frac{k^2}{k^2 + 1}$$

2.
$$\sum_{k=2}^{\infty} \frac{(-1)^k}{k \ln(k)}$$

3.
$$\sum_{j=1}^{\infty} \frac{(-1)^j}{(j+1)\sqrt{2j}}$$

4.
$$\sum_{n=1}^{\infty} (-1)^n n \left(\frac{2}{3}\right)^n$$

5.
$$\sum_{k=1}^{\infty} \frac{\cos(k)}{k^4 + 1}$$

November 19, 2007

Sklensky

Show that the following series converge, and approximate each series accurate to within 0.001.

1.
$$\sum_{k=1}^{\infty} (-1)^{k+1} \frac{1}{k^2 + 1}$$

2.
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n^5}{n^6 + 17}$$

3.
$$\sum_{n=1}^{\infty} (-1)^n \frac{4n}{n! + n + 2}$$

4.
$$\sum_{j=3}^{\infty} \frac{(-1)^j}{4^j}$$

November 19, 2007

Sklensky