Recall:

1. Definition: An alternating series is one whose terms alternate in sign. That is, a series of the form $c_{1}-c_{2}+c_{3}-\cdots$ where c_{i} is positive.
2. Alternating Series Test: Consider the alternating series $c_{1}-c_{2}+c_{3}-\cdots=\sum_{k=1}^{\infty}(-1)^{k+1} c_{k}$ where $c_{k} \geq 0$.

If $\lim _{k \rightarrow \infty} c_{k}=0$, then the series converges.
If in addition $c_{1}>c_{2}>c_{3}>\ldots$, then S lies between S_{n} and S_{n+1} for any n.

Determine whether the following series converge conditionally, converge absolutely, or diverge. For those that converge, find upper and lower bounds.

1. $\sum_{k=1}^{\infty}(-1)^{k+1} \frac{k^{2}}{k^{2}+1}$
2. $\sum_{k=2}^{\infty} \frac{(-1)^{k}}{k \ln (k)}$
3. $\sum_{j=1}^{\infty} \frac{(-1)^{j}}{(j+1) \sqrt{2 j}}$
4. $\sum_{n=1}^{\infty}(-1)^{n} n\left(\frac{2}{3}\right)^{n}$
5. $\sum_{k=1}^{\infty} \frac{\cos (k)}{k^{4}+1}$

Show that the following series converge, and approximate each series accurate to within 0.001 .

1. $\sum_{k=1}^{\infty}(-1)^{k+1} \frac{1}{k^{2}+1}$
2. $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{n^{5}}{n^{6}+17}$
3. $\sum_{n=1}^{\infty}(-1)^{n} \frac{4 n}{n!+n+2}$
4. $\sum_{j=3}^{\infty} \frac{(-1)^{j}}{4^{j}}$
