Example: $\sum_{k=0}^{\infty}\left(\frac{1}{2}\right)^{k}$ is a geometric series, with $r=\frac{1}{2}$.
The associated sequence of terms $\left\{a_{k}\right\}$ is

$$
\left\{\left(\frac{1}{2}\right)^{k}\right\}_{k=0}^{\infty}=\left\{1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \ldots\right\}
$$

The associated sequence of partial sums S_{n} is

$$
\begin{aligned}
&\left\{1,1+\frac{1}{2}, 1+\frac{1}{2}+\frac{1}{4}, 1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}\right. \\
&\left.1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}, \ldots\right\}=\left\{1, \frac{3}{2}, \frac{7}{4}, \frac{15}{8}, \frac{31}{16}, \ldots\right\}
\end{aligned}
$$

1. For each series below:
(i) Find a_{2} and $a_{3} ; S_{2}$ and S_{3}.
(ii) Does the series converge or diverge? If it converges, find the value to which it converges.
(a) $\sum_{k=0}^{\infty} \frac{4}{3^{k}}$
(b) $\sum_{k=0}^{\infty} \frac{3^{k}}{(-4)^{k}}$
2. For each series below, does the series converge or diverge? If it does converge, find the value to which it converges. Note in each case where the series starts!
(a) $\sum_{k=2}^{\infty} \frac{5^{k}}{2^{k}}$
(b) $\sum_{k=42}^{\infty} \frac{1}{5^{k}}$

Do the following series converge or diverge?

1. $\sum_{k=1}^{\infty} \frac{2 k^{2}-3}{5 k^{2}+6 k}$
2. $\sum_{k=98}^{\infty} \frac{3^{k}+\sin (k)}{\cos (k)+5}$
3. $\sum_{k=2}^{\infty} \frac{5^{k}-6 k-27}{7^{k}+14 k^{2}+k}$
