Recall: A power series is a series of the form

$$
\sum_{k=0}^{\infty} a_{k} x^{k} \text { or } \sum_{k=0}^{\infty} a_{k}\left(x-x_{0}\right)^{k}
$$

1. These series are fundamentally different from all the series we've seen before, in that they are actually functions - they contain a variable, x. (The k is not a variable, it's an index. If you write the sum out, it disappears. Nor is the x_{0} usually a variable in the usual sense of the word - you choose the value of your basepoint when you get started.)
2. For each value of x, we have a different series.
3. For some values of x, the resulting series will converge absolutely, for others it will converge conditionally, and for still others, it will diverge.

Example from Monday:

$$
\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{k}}{k+1}
$$

You found this series

1. converges absolutely for all x in $-1<x<1$.
2. converges conditionally for $x=1$.
3. diverges everywhere else.

Thus the interval of convergence is $-1<x \leq 1$, and the radius of convergence is $r=1$.

Find the interval of convergence for $\sum_{k=1}^{\infty} \frac{(x-1)^{k}}{k 2^{k}}$

