From Friday:
Do the following series converge or diverge?

1. $\sum_{k=1}^{\infty} \frac{2 k^{2}-3}{5 k^{2}+6 k}$
$\lim _{k \rightarrow \infty} a_{k}=\frac{2}{5}$. Thus the sequence of terms
converges (to $2 / 5$), but the series diverges by the nth term test. (In other words, the sequence of partial sums S_{n} diverges.)
2. $\sum_{k=98}^{\infty} \frac{3^{k}+\sin (k)}{\cos (k)+5}$ $\lim _{k \rightarrow \infty} a_{k}=\infty$. Thus the sequence of terms diverges, and thus by the nth term test, the series diverges also.
3. $\sum_{k=2}^{\infty} \frac{5^{k}-6 k-27}{7^{k}+14 k^{2}+k}$

Do the following series converge or diverge?

1. $\sum_{k=2}^{\infty} \frac{1}{k^{2}}$

Hint: Draw a picture comparing with $\int_{1}^{\infty} \frac{1}{x^{2}} d x$.
2. $\sum_{k=1}^{\infty} \frac{1}{k}$

Hint: Draw a picture comparing with $\int_{1}^{\infty} \frac{1}{x} d x$.

Goals: Be able to :

1. determine whether a series $\sum a_{k}$ converges or diverges.
2. If it converges, find the limit (that is, the value of the series) exactly, if possible.
3. If it converges but we can't find the limit exactly, be able to approximate it.
