From Friday:

Do the following series converge or diverge?

1.
$$\sum_{k=1}^{\infty} \frac{2k^2 - 3}{5k^2 + 6k}$$

 $\lim_{k\to\infty} a_k = \frac{2}{5}$. Thus the **sequence of terms** converges (to 2/5), but the **series** diverges by the *n*th term test. (In other words, the sequence of partial sums S_n diverges.)

2.
$$\sum_{k=98}^{\infty} \frac{3^k + \sin(k)}{\cos(k) + 5}$$

 $\lim_{k\to\infty} a_k = \infty$. Thus the **sequence of terms** diverges, and thus by the *n*th term test, the series diverges also.

3.
$$\sum_{k=2}^{\infty} \frac{5^k - 6k - 27}{7^k + 14k^2 + k}$$

November 5, 2007 Sklensky

Do the following series converge or diverge?

$$1. \sum_{k=2}^{\infty} \frac{1}{k^2}$$

Hint: Draw a picture comparing with $\int_1^\infty \frac{1}{x^2} dx$.

$$2. \sum_{k=1}^{\infty} \frac{1}{k}$$

Hint: Draw a picture comparing with $\int_1^\infty \frac{1}{x} dx$.

November 5, 2007

Sklensky

Goals: Be able to:

- 1. determine whether a series $\sum a_k$ converges or diverges.
- 2. If it converges, find the limit (that is, the value of the series) exactly, if possible.
- 3. If it converges but we can't find the limit exactly, be able to approximate it.

November 5, 2007 Sklensky

3