Consider the differential equation

$$
x^{\prime \prime}+16 x=f(t), x(0)=0, x^{\prime}(0)=0
$$

where

$$
f(t)= \begin{cases}20 t, & 0 \leq t<5 \\ 0, & t \geq 5\end{cases}
$$

Transform it (using methods we'll learn) to an algebraic equation in a temporary variable s :

$$
s^{2} X(s)+16 X(s)=\frac{20}{s^{2}}-\left[\frac{20}{s^{2}}+\frac{100}{s}\right] e^{-5 s}
$$

After solving for $X(s)$ and writing it in ways that we'll learn are useful, transform it back to the solution to the differential equation,

$$
x(t)=\left\{\begin{array}{cl}
\frac{5}{4} t-\frac{5}{16} \sin (4 t) & 0 \leq t<5 \\
-\frac{5}{16} \sin (4 t)+\frac{5}{16} \sin (4 t-5) & \\
+\frac{25}{4} \cos (4(t-5)) & t \geq 5
\end{array}\right.
$$

Plan:

1. Learn the basics of what we're doing when we do this transform, called a Laplace transform
2. Learn some algebra that we're going to need
3. Learn how undo the transform, i.e. learn the inverse transform
4. Learn how to transform a derivative
5. Apply it to some differential equations

Repeat!

Find the Laplace transform $\mathcal{L}\{f(t)\}$ of the following functions. (Feel free to use Maple for the actual antidifferentiation, but evaluate at the limits of integration yourself, for practice with improper integrals.)

1. $f(t)= \begin{cases}0, & \leq t<4 \\ t^{3}, & t \geq 4\end{cases}$
2. $f(t)=e^{a t}$
3. $f(t)=\cos (k t)$
4. $f(t)=\alpha g(t)+\beta h(t)$, where α and β are constants.

Find your answer in terms of $G(s)=\mathcal{L}\{g(t)\}$ and
$H(s)=\mathcal{L}\{h(t)\}$.
5. Find $\mathcal{L}\left\{f^{\prime}(t)\right\}$, if f is continuous for $t>0$. Find your answer in terms of $F(s)=\mathcal{L}\{f(t)\}$.

1. $f(t)= \begin{cases}0, & \leq t<4 \\ t^{3}, & t \geq 4\end{cases}$

$$
\begin{aligned}
\mathcal{L}\{f(t)\} & =\int_{4}^{\infty} t^{3} e^{-s t} d t \\
& =-\left.\frac{\left.6+6 s t+3 t^{2} s^{2}+t^{3} s^{3}\right) e^{-s t}}{s^{4}}\right|_{4} ^{\infty} \\
& =0+\frac{\left(6+24 s+48 s^{2}+64 s^{3}\right) e^{-4 s}}{s^{4}} \text { if } s>0
\end{aligned}
$$

2. $f(t)=e^{a t}$

$$
\begin{aligned}
\mathcal{L}\{f(t)\} & =\int_{0}^{\infty} e^{a t} e^{-s t} d t \\
& =\int_{0}^{\infty} e^{-(s-a) t} d t \\
& =-\left.\frac{e^{-(s-a) t}}{s-a}\right|_{0} ^{\infty} \\
& =0+\frac{1}{s-a} \text { if } s>a \\
& =\frac{1}{s-a} \text { if } s>a
\end{aligned}
$$

3. $f(t)=\cos (k t)$

$$
\begin{aligned}
\mathcal{L}\{f(t)\} & =\int_{0}^{\infty} \cos (k t) e^{-s t} d t \\
& =\left.\frac{k e^{-s t} \sin (k t)-s e^{-s t} \cos (k t)}{s^{2}+k^{2}}\right|_{0} ^{\infty} \\
& =0-\frac{-s}{s^{2}+k^{2}} \text { if } s>0 \\
& =\frac{s}{s^{2}+k^{2}} \text { if } s>0
\end{aligned}
$$

4. $f(t)=\alpha g(t)+\beta h(t)$, where α and β are constants. Find your answer in terms of $G(s)=\mathcal{L}\{g(t)\}$ and $H(s)=\mathcal{L}\{h(t)\}$.

$$
\begin{aligned}
\mathcal{L}\{f(t)\} & =\int_{0}^{\infty}(\alpha g(t)+\beta h(t)) e^{-s t} d t \\
& =\alpha \int_{0}^{\infty} g(t) e^{-s t} d t+\beta \int_{0}^{\infty} h(t) e^{-s t} d t \\
& =\alpha G(s)+\beta H(s)
\end{aligned}
$$

5. $\mathcal{L}\left\{f^{\prime}(t)\right\}$

$$
\mathcal{L}\left\{f^{\prime}(t)\right\}=\int_{0}^{\infty} f^{\prime}(t) e^{-s t} d t
$$

Integration by parts:
Let $u=e^{-s t}, d v=f^{\prime}(t) d t$
Then $d u=-s e^{-s t} d t, v=f(t)$

$$
\begin{aligned}
\mathcal{L}\left\{f^{\prime}(t)\right\}= & \left.f(t) e^{-s t}\right|_{0} ^{\infty}+s \int_{0}^{\infty} f(t) e^{-s t} d t \\
= & (0-f(0))+s \mathcal{L}\{f(t)\} \\
& \quad \text { if } f(t) \text { is dominated by } e^{s t} \\
= & s F(s)-f(0)
\end{aligned}
$$

Find the Laplace transform of the DE

$$
y^{\prime \prime}+5 y^{\prime}+4 y=e^{-3 t}, y(0)=1, y^{\prime}(0)=2 .
$$

Transforms we already know:

$f(t)$	$\mathcal{L}\{f(t)\}$
t	$\frac{1}{s^{2}}$
t^{3}	$\frac{3!}{s^{4}}$
$e^{a t}$	$\frac{1}{s-a}$
$\cos (k t)$	$\frac{s}{s^{2}+k^{2}}$
$\alpha f(t)+\beta g(t)$	$\alpha F(s)+\beta G(s)$
$f^{(n)}(t)$	$s^{n} F(s)-s^{n-1} f(0)$
	$-s^{n-2} f^{\prime}(0)-\ldots-s f^{(n-2)}(0)$
	$\quad-f^{(n-1)}(0)$

$$
\begin{aligned}
\mathcal{L}\left\{y^{\prime \prime}+5 y^{\prime}+4 y\right\} & =\mathcal{L}\left\{e^{-3 t}\right\} \\
\mathcal{L}\left\{y^{\prime \prime}\right\} & =s^{2} Y(s)-s y(0)-y^{\prime}(0) \\
& =s^{2} Y(s)-s \cdot 1-2 \\
\mathcal{L}\left\{y^{\prime}\right\} & =s Y(s)-y(0) \\
& =s Y(s)-1 \\
\mathcal{L}\{y\} & =Y(s) \\
\mathcal{L}\left\{e^{-3 t}\right\} & =\frac{1}{s+3}
\end{aligned}
$$

$$
s^{2} Y(s)-s-2+5(s Y(s)-1)+4 Y(s)=\frac{1}{s+3}
$$

