${\bf Consider\ the\ differential\ equation}$ 

$$x'' + 16x = f(t), \ x(0) = 0, \ x'(0) = 0$$

where

$$f(t) = \begin{cases} 20t, & 0 \le t < 5 \\ 0, & t \ge 5 \end{cases}$$

November 26, 2007

Sklensky

Transform it (using methods we'll learn) to an **algebraic** equation in a temporary variable s:

$$s^{2}X(s) + 16X(s) = \frac{20}{s^{2}} - \left[\frac{20}{s^{2}} + \frac{100}{s}\right]e^{-5s}$$

November 26, 2007

Sklensky

After solving for X(s) and writing it in ways that we'll learn are useful, transform it back to the solution to the differential equation,

$$x(t) = \begin{cases} \frac{5}{4}t - \frac{5}{16}\sin(4t) & 0 \le t < 5\\ -\frac{5}{16}\sin(4t) + \frac{5}{16}\sin(4t - 5) & \\ +\frac{25}{4}\cos(4(t - 5)) & t \ge 5 \end{cases}$$



November 26, 2007 Sklensky

## Plan:

- 1. Learn the basics of what we're doing when we do this transform, called a  $Laplace\ transform$
- 2. Learn some algebra that we're going to need
- 3. Learn how undo the transform, i.e. learn  $the\ inverse$  transform
- 4. Learn how to transform a derivative
- 5. Apply it to some differential equations

Repeat!

Find the Laplace transform  $\mathcal{L}\{f(t)\}$  of the following functions. (Feel free to use Maple for the actual antidifferentiation, but evaluate at the limits of integration yourself, for practice with improper integrals.)

1. 
$$f(t) = \begin{cases} 0, & \le t < 4 \\ t^3, & t \ge 4 \end{cases}$$

- $2. \ f(t) = e^{at}$
- $3. \ f(t) = \cos(kt)$
- 4.  $f(t) = \alpha g(t) + \beta h(t)$ , where  $\alpha$  and  $\beta$  are constants. Find your answer in terms of  $G(s) = \mathcal{L}\{g(t)\}$  and  $H(s) = \mathcal{L}\{h(t)\}$ .
- 5. Find  $\mathcal{L}\{f'(t)\}\$ , if f is continuous for t > 0. Find your answer in terms of  $F(s) = \mathcal{L}\{f(t)\}\$ .

1. 
$$f(t) = \begin{cases} 0, & \le t < 4 \\ t^3, & t \ge 4 \end{cases}$$

$$\mathcal{L}\{f(t)\} = \int_{4}^{\infty} t^{3}e^{-st} dt$$

$$= -\frac{6 + 6st + 3t^{2}s^{2} + t^{3}s^{3})e^{-st}}{s^{4}}\Big|_{4}^{\infty}$$

$$= 0 + \frac{(6 + 24s + 48s^{2} + 64s^{3})e^{-4s}}{s^{4}} \text{ if } s > 0$$

$$2. f(t) = e^{at}$$

$$\mathcal{L}{f(t)} = \int_0^\infty e^{at} e^{-st} dt$$

$$= \int_0^\infty e^{-(s-a)t} dt$$

$$= \left. -\frac{e^{-(s-a)t}}{s-a} \right|_0^\infty$$

$$= 0 + \frac{1}{s-a} \text{ if } s > a$$

$$= \frac{1}{s-a} \text{ if } s > a$$

 $3. f(t) = \cos(kt)$ 

$$\mathcal{L}{f(t)} = \int_0^\infty \cos(kt)e^{-st} dt$$

$$= \frac{ke^{-st}\sin(kt) - se^{-st}\cos(kt)}{s^2 + k^2} \Big|_0^\infty$$

$$= 0 - \frac{-s}{s^2 + k^2} \text{ if } s > 0$$

$$= \frac{s}{s^2 + k^2} \text{ if } s > 0$$

4.  $f(t) = \alpha g(t) + \beta h(t)$ , where  $\alpha$  and  $\beta$  are constants. Find your answer in terms of  $G(s) = \mathcal{L}\{g(t)\}$  and  $H(s) = \mathcal{L}\{h(t)\}$ .

$$\mathcal{L}\{f(t)\} = \int_0^\infty (\alpha g(t) + \beta h(t))e^{-st} dt$$

$$= \alpha \int_0^\infty g(t)e^{-st} dt + \beta \int_0^\infty h(t)e^{-st} dt$$

$$= \alpha G(s) + \beta H(s)$$

## 5. $\mathcal{L}\{f'(t)\}$

$$\mathcal{L}\{f'(t)\} = \int_0^\infty f'(t)e^{-st} dt$$

Integration by parts:

Let 
$$u = e^{-st}$$
,  $dv = f'(t) dt$ 

Then 
$$du = -se^{-st} dt$$
,  $v = f(t)$ 

$$\mathcal{L}\{f'(t)\} = f(t)e^{-st}\big|_0^{\infty} + s \int_0^{\infty} f(t)e^{-st} dt$$

$$= (0 - f(0)) + s\mathcal{L}\{f(t)\}$$
if  $f(t)$  is dominated by  $e^{st}$ 

$$= sF(s) - f(0)$$

Find the Laplace transform of the DE

$$y'' + 5y' + 4y = e^{-3t}, y(0) = 1, y'(0) = 2.$$

## Transforms we already know:

| f(t)                       | $\mathcal{L}\{f(t)\}$                    |
|----------------------------|------------------------------------------|
| $\overline{t}$             | $\frac{1}{s^2}$                          |
| $t^3$                      | $\frac{3!}{s^4}$                         |
| $e^{at}$                   | $\frac{1}{s-a}$                          |
| $\cos(kt)$                 | $\frac{s}{s^2 + k^2}$                    |
| $\alpha f(t) + \beta g(t)$ | $\alpha F(s) + \beta G(s)$               |
| $f^{(n)}(t)$               | $s^n F(s) - s^{n-1} f(0)$                |
|                            | $-s^{n-2}f'(0) - \ldots - sf^{(n-2)}(0)$ |
|                            | $-f^{(n-1)}(0)$                          |

$$\mathcal{L}\{y'' + 5y' + 4y\} = \mathcal{L}\{e^{-3t}\}$$

$$\mathcal{L}\{y''\} = s^2 Y(s) - sy(0) - y'(0)$$

$$= s^2 Y(s) - s \cdot 1 - 2$$

$$\mathcal{L}\{y'\} = sY(s) - y(0)$$

$$= sY(s) - 1$$

$$\mathcal{L}\{y\} = Y(s)$$

$$\mathcal{L}\{e^{-3t}\} = \frac{1}{s+3}$$

$$s^{2}Y(s) - s - 2 + 5(sY(s) - 1) + 4Y(s) = \frac{1}{s+3}$$