Use Laplace transforms to solve the IVP

$$
y^{\prime \prime}+5 y^{\prime}+4 y=e^{-3 t}
$$

with

$$
\begin{gathered}
y(0)=1, y^{\prime}(0)=2 \\
\mathcal{L}\left\{y^{\prime \prime}+5 y^{\prime}+4 y\right\}=\mathcal{L}\left\{e^{-3 t}\right\} \\
\Rightarrow\left(s^{2} Y(s)-s-2\right) \\
+5(s Y(s)-1)+4 Y(s)=\frac{1}{s+3} \\
\Rightarrow\left(s^{2}+5 s+4\right) Y(s)=s+7+\frac{1}{s+3} \\
\Rightarrow Y(s)=\frac{(s+7)(s+3)+1}{(s+3)(s+1)(s+4)} \\
\Rightarrow \mathcal{L}^{-1}\{Y(s)\}=\mathcal{L}^{-1}\left\{\frac{s^{2}+10 s+22}{(s+3)(s+1)(s+4)}\right\} \\
\Rightarrow y(t)=(\text { by partial fractions }) \\
= \\
\Rightarrow \mathcal{L}^{-1}\left\{\frac{13}{6(s+1)}-\frac{1}{2(s+3)}\right. \\
\Rightarrow=\frac{\left.-\frac{2}{3(s+4)}\right\}}{} \begin{aligned}
& =\frac{13}{2} e^{-3 t}-\frac{2}{3} e^{-4 t}
\end{aligned}
\end{gathered}
$$

1

- A rational function is a ratio of polynomials. A rational function $\frac{p(x)}{q(x)}$ is proper if $p(x)$ has lower degree than $q(x)$.
- Any proper rational function can be written as the sum of partial fractions of just two basic types:

$$
\frac{A}{(a x+b)^{n}} \quad \text { or } \quad \frac{A x+B}{\left(a x^{2}+b x+c\right)^{n}} .
$$

Transforms of Some Basic Functions

$f(t)$	$F(s)=\mathcal{L}\{f(t)\}$
1	$\frac{1}{s}$
t^{n}	$\frac{n!}{s^{n+1}}$
$e^{a t}$	$\frac{1}{s-a}$
$\sin (k t)$	$\frac{k}{s^{2}+k^{2}}$
$\cos (k t)$	$\frac{s}{s^{2}+k^{2}}$
$\sinh (k t)$	$\frac{k}{s^{2}-k^{2}}$
$\cosh (k t)$	$\frac{s}{s^{2}-k^{2}}$

Also, remember: Laplace transforms, and therefore inverse Laplace transforms, are linear transforms:

$$
\mathcal{L}^{-1}\{\alpha F(s)+\beta G(s)\}=\alpha \mathcal{L}^{-1}\{F(s)\}+\beta \mathcal{L}^{-1}\{G(s)\} .
$$

Solve the IVP

$$
\begin{aligned}
& \quad x^{\prime \prime}+16 x=f(t), x(0)=0, x^{\prime}(0)=0 \\
& f(t)= \begin{cases}20 t, & 0 \leq t<5 \\
0, & t \geq 5\end{cases}
\end{aligned}
$$

(This can be interpreted as describing the motion of a spring/mass system with an external force acting on the system for only the first 5 seconds; $x(t)$ would represent the displacement of the mass.)

Use Laplace transforms to solve the IVPs below:

1. $y^{\prime}+2 y=f(t), y(0)=0$, where $f(t)= \begin{cases}t, & 0 \leq t<3 \\ 0, & t \geq 3\end{cases}$
2. $y^{\prime \prime}+4 y=f(t), y(0)=1, y^{\prime}(0)=0$, where
$f(t)= \begin{cases}0, & 0 \leq t \leq 2 \pi \\ \sin (t), & t \geq 2 \pi\end{cases}$
Hint: You may find it helpful to remember that $\sin (t)=\sin (t-2 \pi)$.
