$$P_n(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \frac{f'''(x_0)}{3!}(x - x_0)^3 \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n$$

October 10, 2007

$$P_n(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \frac{f'''(x_0)}{3!}(x - x_0)^3 \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n$$

2. The idea behind Taylor polynomials approximating a function f(x) is to focus on how f behaves at one point x_0 . We match not only the y-values at x_0 , but also the slopes (the first derivative), the concavity (the second derivative), and however many more derivatives we choose -n is the number of derivatives we're choosing to match.

October 10, 2007

$$P_n(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \frac{f'''(x_0)}{3!}(x - x_0)^3 \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n$$

- 2. The idea behind Taylor polynomials approximating a function f(x) is to focus on how f behaves at one point x_0 . We match not only the y-values at x_0 , but also the slopes (the first derivative), the concavity (the second derivative), and however many more derivatives we choose -n is the number of derivatives we're choosing to match.
- 3. Based on just one example, it seems as if perhaps the higher n is, the better an approximation $P_n(x)$ gives.

October 10, 2007

Friday, we found that we can approximate $\cos(x)$ near x = 0 by

$$\cos(x) \approx 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!}$$

and near $x = 2\pi$ by

$$\cos(x) \approx 1 - (x - 2\pi)^2 / 2! + (x - 2\pi)^4 / 4! - (x - 2\pi)^6 / 6!$$

We also saw that the first six derivatives of $\cos(x)$ at x = 0agree with the first six derivatives of $P_6(x) = 1 - x^2/2! + x^4/4! - x^6/6!$ at x = 0.

October 10, 2007

$$P_n(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \frac{f'''(x_0)}{3!}(x - x_0)^3 \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n$$

2. Rewriting this slightly, the *n*th Taylor polynomial for f(x) based at $x = x_0$ is

$$P_n(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + a_3(x - x_0)^3 \dots + a_n(x - x_0)^n,$$

where $a_i = \frac{f^{(i)}(x_0)}{i!}$.

October 10, 2007

1. When the base point is $x_0 = 0$, this becomes

$$P_n(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 \dots + \frac{f^{(n)}(0)}{n!}x^n$$

A Taylor polynomial based at x = 0 is also called a *MacLaurin* polynomial.

2. Again, rewriting this,

$$P_n(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 \dots + a_n x^n,$$

where $a_i = \frac{f^{(i)}(0)}{i!}$.

October 10, 2007

- 1. (a) Find the 3rd, 5th, and 7th Taylor polynomial for $f(x) = \sin(x)$ based at $x_0 = 0$
 - (b) Check how good an approximation $P_3(x)$, $P_5(x)$, and $P_7(x)$ are by graphing $P_3(x)$, $P_5(x)$, $P_7(x)$ and $\sin(x)$ all on the same set of axes. (Find an interval that gives you a sense of where the approximations are good and where they are not.)
 - (c) Approximate $\sin\left(\frac{1}{2}\right)$ using $P_7(x)$. Compare it to the approximation Maple gives for $\sin\left(\frac{1}{2}\right)$.
- 2. Find the 6th Taylor polynomial for $g(x) = e^x$ based at x = 0, and use it to approximate e.

October 10, 2007