1. The nth Taylor polynomial for $f(x)$ based at $x=x_{0}$ is

$$
\begin{aligned}
P_{n}(x)= & f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2} \\
& +\frac{f^{\prime \prime \prime}\left(x_{0}\right)}{3!}\left(x-x_{0}\right)^{3} \cdots+\frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}
\end{aligned}
$$

1. The nth Taylor polynomial for $f(x)$ based at $x=x_{0}$ is

$$
\begin{aligned}
P_{n}(x)= & f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2} \\
& +\frac{f^{\prime \prime \prime}\left(x_{0}\right)}{3!}\left(x-x_{0}\right)^{3} \cdots+\frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}
\end{aligned}
$$

2. The idea behind Taylor polynomials approximating a function $f(x)$ is to focus on how f behaves at one point x_{0}. We match not only the y-values at x_{0}, but also the slopes (the first derivative), the concavity (the second derivative), and however many more derivatives we choose $-n$ is the number of derivatives we're choosing to match.
3. The nth Taylor polynomial for $f(x)$ based at $x=x_{0}$ is

$$
\begin{aligned}
P_{n}(x)= & f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2} \\
& +\frac{f^{\prime \prime \prime}\left(x_{0}\right)}{3!}\left(x-x_{0}\right)^{3} \cdots+\frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}
\end{aligned}
$$

2. The idea behind Taylor polynomials approximating a function $f(x)$ is to focus on how f behaves at one point x_{0}. We match not only the y-values at x_{0}, but also the slopes (the first derivative), the concavity (the second derivative), and however many more derivatives we choose $-n$ is the number of derivatives we're choosing to match.
3. Based on just one example, it seems as if perhaps the higher n is, the better an approximation $P_{n}(x)$ gives.

Friday, we found that we can approximate $\cos (x)$ near $x=0$
by

$$
\cos (x) \approx 1-x^{2} / 2!+x^{4} / 4!-x^{6} / 6!
$$

and near $x=2 \pi$ by

$$
\cos (x) \approx 1-(x-2 \pi)^{2} / 2!+(x-2 \pi)^{4} / 4!-(x-2 \pi)^{6} / 6!
$$

We also saw that the first six derivatives of $\cos (x)$ at $x=0$ agree with the first six derivatives of $P_{6}(x)=1-x^{2} / 2!+x^{4} / 4!-x^{6} / 6!$ at $x=0$.

1. The nth Taylor polynomial for $f(x)$ based at $x=x_{0}$ is

$$
\begin{aligned}
P_{n}(x)= & f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2} \\
& +\frac{f^{\prime \prime \prime}\left(x_{0}\right)}{3!}\left(x-x_{0}\right)^{3} \cdots+\frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}
\end{aligned}
$$

2. Rewriting this slightly, the nth Taylor polynomial for $f(x)$ based at $x=x_{0}$ is

$$
\begin{aligned}
P_{n}(x)= & a_{0}+a_{1}\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)^{2} \\
& +a_{3}\left(x-x_{0}\right)^{3} \cdots+a_{n}\left(x-x_{0}\right)^{n}
\end{aligned}
$$

where $a_{i}=\frac{f^{(i)}\left(x_{0}\right)}{i!}$.

1. When the base point is $x_{0}=0$, this becomes

$$
\begin{aligned}
P_{n}(x)= & f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2} \\
& +\frac{f^{\prime \prime \prime}(0)}{3!} x^{3} \cdots+\frac{f^{(n)}(0)}{n!} x^{n}
\end{aligned}
$$

A Taylor polynomial based at $x=0$ is also called a MacLaurin polynomial.
2. Again, rewriting this,

$$
\begin{aligned}
P_{n}(x)= & a_{0}+a_{1} x+a_{2} x^{2} \\
& +a_{3} x^{3} \cdots+a_{n} x^{n}
\end{aligned}
$$

where $a_{i}=\frac{f^{(i)}(0)}{i!}$.

1. (a) Find the 3rd, 5th, and 7th Taylor polynomial for $f(x)=\sin (x)$ based at $x_{0}=0$
(b) Check how good an approximation $P_{3}(x), P_{5}(x)$, and $P_{7}(x)$ are by graphing $P_{3}(x), P_{5}(x), P_{7}(x)$ and $\sin (x)$ all on the same set of axes. (Find an interval that gives you a sense of where the approximations are good and where they are not.)
(c) Approximate $\sin \left(\frac{1}{2}\right)$ using $P_{7}(x)$. Compare it to the approximation Maple gives for $\sin \left(\frac{1}{2}\right)$.
2. Find the 6th Taylor polynomial for $g(x)=e^{x}$ based at $x=0$, and use it to approximate e.
