Let $f(x)=\sin (x)$ and let $P_{5}(x)$ be the 5th order Taylor polynomial for $f(x)$ at $x_{0}=\pi$.

1. Find $P_{5}(x)$
2. Verify your answer by graphing $P_{5}(x)$ and $f(x)$ on the same set of axes.
3. Use $P_{5}(x)$ to find an approximation for $\sin (4)$ and for $\sin (6)$. Will these be larger or smaller than the actual value of $\sin (6)$? From the graphs, do they look like good approximations or bad?
4. Find an interval centered at π in which the approximation error $\left|\sin (x)-P_{5}(x)\right|$ is less than .01 .

Let $f(x)=\ln (x)$ and let $P_{5}(x)$ be the 5th order Taylor polynomial for $f(x)$ at $x_{0}=1$.

1. Find $P_{5}(x)$
2. Verify your answer by graphing $P_{5}(x)$ and $f(x)$ on the same set of axes.
3. Use $P_{5}(x)$ to find an approximation for $\ln (1 / 2)$ and for $\ln (2)$. Will these be larger or smaller than the actual value of $\ln (1 / 2)$ and $\ln (2)$? How good approximations are they?
4. Find an interval centered at 1 in which the approximation error $\left|\ln (x)-P_{5}(x)\right|$ is less than .01 .
