## Taylor's Theorem:

Let $f(x)$ be a function which is repeatedly differentiable on an interval $I$ containing $x_{0}$. Suppose $P_{n}(x)$ is the $n$-th order Taylor polynomial based at $x_{0}$. Further suppose $K_{n+1}$ is a bound for $\left|f^{(n+1)}(x)\right|$ on $I$. That is,

$$
\left|f^{(n+1)}(x)\right| \leq K_{n+1} \text { for all } x \in I
$$

Then for all $x \in I$,

$$
\left|f(x)-P_{n}(x)\right| \leq \frac{K_{n+1}}{(n+1)!}\left|x-x_{0}\right|^{n+1}
$$

Let $f(x)=\cos (x)$ and let $x_{0}=\frac{\pi}{2}$. You now know how to show that

$$
P_{5}(x)=-(x-\pi / 2)+(x-\pi / 2)^{3} /!-(x-\pi / 2)^{5} / 5!
$$

1. Use $P_{5}(2)$ to approximate $\cos (2)$
2. Use Taylor's Theorem to get a feel for how accurate your approximation is.
3. Find a value of $n$ so that $P_{n}(2)$ approximates $\cos (2)$ accurate within $10^{-10}$.

## Approximating $\pi$

Let $f(x)=\arctan (x)$ and let $x_{0}=0$.

1. Find the exact value of $\arctan (1)$.
2. Find $P_{5}(x)$ for $f(x)=\arctan (x)$.
(Use Maple to calculate the derivatives of $f$.
Remember, you calculate the second derivative, for instance, by typing in $\operatorname{diff}(\arctan (x), x, x))$
3. Use $P_{5}$ to approximate $\arctan (1)$, and use Theorem 2 to determine how close your approximation is.
4. Use your answers to the above questions to find an approximation for $\pi$.
5. If you have time, find a general form for $P_{n}(x)$, and then use $P_{50}(1)$ to approximate $\pi$.
