1. For each integral, explain why $\int_{a}^{b} f(x) dx$ is improper, and determine whether the integral converges or diverges.

a.
$$\int_{1}^{\infty} \frac{1}{x^3} dx$$

b.
$$\int_{1}^{\infty} \frac{1}{x} dx$$

c.
$$\int_{1}^{\infty} 1 + \frac{1}{x^2} dx$$

d.
$$\int_{1}^{\infty} \frac{1}{x^p} dx$$
 where $p > 1$

- 2. Think about the above results and the big picture of what's going on.
 - (a) Is it *necessary* that f(x) converge to 0 as $x \to \infty$ in order for $\int_{a}^{\infty} f(x) dx$ to converge to a finite number?

(b) If
$$f(x)$$
 does converge to 0 as $x \to \infty$, must
 $\int_{a}^{b} f(x) dx$ automatically converge to a finite
number? That is, is $f(x) \to 0$ a sufficient condition
for $\int_{a}^{\infty} f(x) dx$ to converge to a finite number?

October 18, 2007

Sklensky